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Judith M. Shedden & Walter Schneider
Irarning Research and Development Cente/

University of Pittsburgh, Pittsburgh, PA 152ffi

Abstraci

Given the massively parallel nature of the brain an obviotts

question is why ine so many infornntion processing functions serial?

In particular, this paper addresses the issue of the comparison Process.

Behaviual data show that in perceptual rnatching tasks (such as

menpry scanning and visual search) performancc is systematically

affected by stimulus load, in that required processing time increases

with each additional comparison itern It is arguable whether this

indicates a processing system that performs serial conparisons, or a

system for which comparisons are done in parallel but reaction tinp

is affected by load because of other system limitations. In this

simulation we show that in a rnodular connectionist system v@tor

transmission is possible in parallel, but the comparison process within

a nrodule must be done serially unless accuracy is sacrificed.

This paper examines the question of the serial or parallel

nature of the comparison process, and describes the

implementation of a connectionist model designed to test the

efficiency of parallel multiple comparisons. Despite the fact

that neocortex is massively parallel in iS architecture there are

many tasks for which behavioral data illustrate serial

processing. It is important to determine what processing

iimitations induce serial processing even in the presence of

parallel hardware. In some cases this can be explained by

limitations in the number of responses that can be made at one

time (Deutsch & Deutsch, 1963), by crosstalk or vector

transmission interference (Schneider & Detweiler, 1987), or by

competition for limited processing resources or operators

(Kahneman, lg73). Connectionist based modeling has

emphasized the parallel nature of processing. However, even

in connectionist based vector processing systems there is a

need to serialize operations. With respect to thc comparison

process the limitation may be due, not to limitations of the

,yrt"- ro make multiple comparisons, but to the increased

error that results from multiplc comparisons in the same

comParator.

Theories of Comparison Processes: Background

Psychologists have bcen studying the perceptual comparison

process for years using a multitude of tasks, for the most part

analyzing measures of accuracy and rcaction time to respond

to a target in a ficld of distractors. [n a memory scanning

and visual search task subjects compare one or more items in
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memorytooneormorei temsonvisualdisplay, lookingfor
" -"t"h between items (Sternberg ,1969; Schneider & ShiffrirU

1977; see Shiffriq 1983 for review). In a same/different

response task subjects comPare items in two lists looking for

a mismatch between items (Proctor, Healy & Van Zandt,

1991; Ratcliff & Hacker, 1981). In a conjunction search task

subjects search for a target consisting of a conjunction of

particular features in a field of distractor items which consist

of tn" same feanses but not the conjunction (Treisman &

Gelade, 1980).
A robust finding of memory or display scaruring is that

reaction time increases in a nearly linear fashion as a function

of the number of comparisons that must be performed (e'g',

Stemberg, 1969, Schneider & Shiffrin, 1977)' This linear

increase typically occurs when there is a varied mapping

between stimuli and responses (e.g., the subject's responses to

the same stimuli change from trial to trial, see Schneider &

Shiffrin, 1977) or under conditions of high accuracy and low

discriminability. These data have been interpreted by some as

indicating a serial repetition of the Perceptual comparison

process (Sternberg, 1969; Schneider & Shiffrin, 1977;

Treisman & Gelade, 1980). Another interpretation of the

linear increasing reaction time function is that all items are

compared in parallel, ild the effect of load on reaction time

is due to other limitations of the parallel processing system

(Pashler & Badgio, 1987; koctor, Healy, & Van Zandt,l99l;

Rarcliff, 1983). If there is a well practiced consistent mapping

between stimuli and responses then comparisons can be

performed in parallel (see schneider & shiffrin, 1977)

indicating the hardware can support parallel comparisons. A

reaction rime function that docs not increase with load

indicates preattcntive, or aulomatic parallcl processing in

which the target "pops out," and is thought to be independent

of rhe comparison process (schneider, 1985; Trcisman, 1985).

The moclcling of consistent search is detailed elscwhcrc (Gupta

& Schncider, l99l). This paPcr focuscs on the varied

mapping search in which scrial processing occurs'

Thcre have bcen a varicty of modeling tcchniques used to

explain rhc linear increase in reaction time (sce Townscnd &

Ashby, 1983; Luce, 1986). Thc models take the form of

cither assuming the comparisons are performed sequcntially,

or they arc performed in parallel but at a rcduced rate due to

rhe need ro share the resources that enable parallel processing.

In general, examining the mean data can not distinguish

bctween fhe serial or parallel resource limited proccssing

models. Howevctr, if the clata (e.g., schneider & Shiffrin,

lgTT,expcriment 2) show a self-tcrminating scan in which the

slope of the positive mean function increa^scs at half the rate

ofthencgativefunction,andtheslopeoft]nevariancefunction
increases faster for the positive than the ncg,ative rcsponses,



then there is strong support for a serial comparison Process
(see Townsend & Ashby, 1983; Luce, 1986). In this paper we

exirmine why the processing must sometimes be serial even

with parallel hardware.
Existing models generally do not Provide an interpretation

of why processing should be serial or resowce limited Frorn

the physiological perspective there is little justificatio'n for a

requirement that visual processing be serial. The retina and
early levels of the visual system certainly operate in parallel
with different retinal locations activating topographically
distinct sections of tissue in multiple visual maPs (Desimone

& Ungerleider, 1989). It may be that these parallel channels
must converge to a single comparator which becomes
inaccurate whe,n receiving multiple inputs. The present model
explicitly models such a comparator in a conneclionist

simulation, and maps out accuracy as a function of the number

of concurrent inputs. The simulations described in this paper

provide evide,nce for serial comparisons within a single

comparator module. Parallel comparisons are still conceivable

if more than one comparator is available. However, l.he

behavioral data supports the view that human visual and

memory processing is serial, and is likely to rePresent

processing by a single comparator in varied mapping search

tasks.

Modular Organization of Cortical Anatomy
The present model utilizes a common modular architecture

and parallel processing incorporating salient features of

cortical processing. Cells throughout cortex (post the initid

sensory areas such as visual area Vl) show similar pattems of

layering, rypes of cells, and local connections. The stnrcture

of cortex is modular, with processing occurring in identical

columns, or hypercolumrs, which are highly connected within

and sparsely connected betwee,lr (Mountcastle, 1979). Studies
of V2 cortex show a stmctured layering system of cells and

connections (Lwrd, Handrickson, Ogren, & Tobi, 1981).

Information is transmitted through a column in a feed forward

direction through two layers of pyramidal cells. An excitatory
signal is input to Layer 4 pyramidal cells, which project to

layer 2-3 pyramidal cells, which in tum project out of ttre

column. In addition, there are recurrent connections within a

column, in which excitatory pyramidal cells feedback to
themselves. tnhibitory interncurons are primarily local
connections within a column, and it is thought they perform
gating and modulatory functions. A special class of axon-
axon inhibitory cell is the chandelier cell, which connects to
the axon initial segments of ses of pyramidal output cells
(Peters, 1984). Chandelier cells have fast inhibitory effects,
and possibly function as attentional gating dcvices (see

Shedden & Schneider, 1990, Douglas & Martin, 1990).

A lltodular Connectionist Model

The simulation under discussion was implemcnted in the

CAP2 computer simulation environment. The general modcl

incorporates modules, units, layers, and control elemcnts

which can be combined in various architectural configurations.

A module consiss of an input layer of units, a recurrently

connected auto-associative matrix, a fced-forward associative

matrix, and an outPut layer of units (sce Figure l)' Modules

can !g added to the system in breadth, so that several input

modules (Figwe 1: la and lb) connect to one highcr lcvcl

module (Figure 1: 2a). tn addition, modules can be added to

the system in depth, creating several hierarchical layers.

Associated with each module are control elements (gain and

feedback) which manipulate signal strength within the systenl

and report elements (activity and priority) which manipulate

attentional effects.
Each module effectively has three layers making uP a

connectionist network, including the module lnput layer

(naditionally called the hidden layer), the module output

layer, and the data lnput (which may be the output from the

previous level of modulas). The current simulation consists of

two modules connected hierarchically, so that the output from

one module feeds forward through an associative matrix to

become the data input to the other module.

The model incolporates the recurrent nature of cortical

within-column connections as seen on Layer 4 pyramidal cells.

The modules are implemented differently from the standard

three-layer connectionist networh in that the input layer of

each module is recurrently connected through an auto-

associative matrix to itself. In this way information input to

the module on each iteration is a function of the extemal input

plus internal feedback from previous transmissions. ln a

hierarchically organized architecture the external input is

received from an input module (or modules) on the processing

layer below, and the strength of the external signal is

controlled by a scalar gain control element associated with the

input module. The strength of the internal feedback signal in

a module is controlled by a scalar feedback control element

associated with that module. Thus, the gain and feedback

control elements function to modulate the output of a

population of units in an analogous fashion to the

hypothesized function of the inhibitory chandelier cell

discussed earlier. In general, the net input to a module is:

net input = (feedback * intemal input) + (gain * extemal input),

where feedback and gain are scalar values and the internal and

external inputs :rre vectors.

Slmulatlons. The vector space for one simulation consists

of ten pairs of input and target veclors, each having a length

of 50 units, with correlations of 0.15 or below within the

members of each input and target vcctor set. This is done by

generaling random v@tors and discarding those with

correlations above 0.15. Activation lcvels for each vector unit

range from -1.0 to 1.0, with a resting activation of 0.0. lnput

vectors and target vectors have unit activations set randomly

to -1.0 or 1.0, and the target vector units are thcn clippcd to -

0.9 or 0.9 respectively.
During training an input vector is presentcd to the systenL

activation is allowed to spread through thc nctwork, and the

error is calculated between the output vector and the target

vector. Activation of thc hidden layer units are allowed to

range freely between -1.0 and 1.0; activation of the output

layer units are subjectcd to the nonlinear logistic function

activity= -1 +2!(1 + e-arrv.fi,.o'l.
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Figure l: A corurcctionist model of cortictl Focersing. This rnodel consists of a nro layer structurc that pffallels he conical input
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the information flow from left to right rkough two modules. The CAP2 environment is &scribed in more detsil elsewherc (Schneidel

& Det*"iler, 198?; Detweiler & Sc-hnei<hr, in press; shedden & schneider, 1990; Gupta & Scttrreicler, 191)'

Connection weighs are changed by the back propagation of

the eror after each presentation (Rumelhart, Hinton, &

Williams, 1936). At the same time the recurTent corurection

weights of the autc.ilssociation matrix at the hidden layer are

changed using the delta learning rule (see McClelland &

Rumelhart, 1988). The network is trained for 20 epochs, each

of which consist of one presentation of all input/target vector

pairs in random order. At the completion of training the

system has reached the criterion of lAUVo accuracy and

correlations of 0.94 to 0.99 betwee,lr the output and target

vectors for each inPut Pattem.

The Vector Comparlson Task. The task set for the system

is a simple matching task, in which vectors to be matched are

presented along with l, 2,3, or 4 comparison vectors, thus

requiring either l, 2, 3, or 4 parallel comparisons. Dwing

testing every input vector is used in turn as the vcctor to be

matched (sample vector), and the comparison vcctors arc

chosen randomly without replacement from the remaining

vectors in the set. On positive trials, one of the comparison

vectors is identical to the sample vector. An equal numbcr of

positive and negative trials are presented. On each trial the

comparison set of input vectors are addcd, and scaled as a

function of the number of inpus (e'g., the addition of from 2

to 5 vectors are scaled from 0.5 to 0.2 of the single vector

input). Activity is allowed to build in the system for 5

iterations of extcmal input plus intemal recurrent feedback.

The data presented bclow are from 5 different sets of l0

input/target vector pairs, processed at 4 levels of feedback

(discusscd bclow), for a total of 20 simulations and 50 datum

points pcr condition.

The measure of evaluation the network uses to dctermine a

match is vector activiry. The vector activity is the strength of

the evoked v@tor following the summation of two or more

Feedback
AcWity

input vectors. For example, in Figure 1, modules la and lb

oulput and activate vectors in module 2a. An input vector

evokes a specific pattern of activity over the input and output

layers of the module. When multiple v@tors are presented

their effect on the input layer is additive, thus when the

vectors are similar the overall level of activiry will be higher

than when they are uncorrelated (see Schneider & Oliver,

1991).
One measure of vector activity is the average sum of the

squared activity of each wtit, which can be thought of in

geometric tenns as the length of the vector. When two

vectors are added together, the length of the resultant vector

is a measure of the similarity of the two vectors. The

resulting activiry is equal to:

aaivftvrwr*i rf -i yt,2lxl lylcose
,.1 ,.t

where n is the numbcr of vector units, theta is the anglc

bctween the vectors, and lxl and lyl arc thc Euclidian lengths

of the vectors x and y.

ln a matching task a system attcmpts to detect a match if

the measure of activity (or vector lcngth) is above a sct

criterion, and rcjcct a match otherwise. This analysis

cxamines the function of accuracy at this task with an

increasing numbcr of parallel comparisons. A mcasure of

comparison accuracy is providcd by the d' metric. The d'

(from Signal Dctection ft*ry) is a measure of the signal

detection scnsitivity of a system, and takes into account

possible response biases (Tanner & Swets, 1954). There arc

two distributions of possible vector activity, one in which no

match occurs (noise), and one in which a match docs occur

(signal plus noise). To achieve high accuracy the system must

not only detect the signal, but must make a correct rcjection

of noise in which no signal occurs. Thus a match criterion



must be chosen so that both the probability of missing a signal
and the probability of making a false alarm to noise are low.

This is only possible if sensitivity to the signal is high enougtt,

that is, if there is enough distance between the two
distributions of noise, and signal plus noise. The d' is a
measure of the distance between the means of the two
distributions in normal standard deviations, and is therefore a
measure of sensitiviry that is not affected by the possible
positive or negative response biases for which humans are
prone. From d', f one assumes a non-biased criterion it is
possible to determine the probability for elror, which is simply
the area under the overlapping tails of the two distributions.
A d' of 4, 3, 2, 1, or 0.5 normal standard deviations
corresponds to an error probabiliry of 0.02, 0.07, 0.16, 0.31,
or 0.4 respectively, assuming the subject makes an equal
number of misses and false alarms. ln scanning experiments
humans are generally expected to maintain accuracy above
957o ard hence a d' of above 3 is expected

Flgure 2: Activity on the hidden layer is presented as a function

of the number of parallel comparisons. When only one

comparison is necessary the difference between the Match and No

Match distributions is large, but decreases dramatically if multiple

comparisons must be made. The measure of activity is the

average sum of the squared activity of each vecor unit. Error

bars indicate one standard deviation above and below the mean.

There is much more information containcd in a vcctor than

its lengttL and it would be possible to train a nctwork

spccifically to distinguish betwecn distributions of noise and

signal plus noise. However, we arc intercstcd the human

capacity to successfully pcrform comparisons on the first trial.

Slmulatlon Results. Figure 2 shows thc activity levcl of

the hidden layer of the network as eithcr l, 2,3, or 4 parallcl

comparisons are made (50 trials per condition). The mea-sure

of activity is the average sum of the squared activity of the

vector units. Whcn only one comparison is required thcre is

clear separation bctween the Match and the No Match

distributions (means of 0.88 and 0.73 respectively). With one

comparison an activiry criterion can be set which rcsults in a

d' of 3.48 and a 4Vo error rate. However whcn two or more

comparisons are performed the difference betwecn the

distributions becomes much smallcr and thc region of possiblc
error becomes much larger. For two comparisons the d' drops

to 0.98 with an error rate of 3l%o, which would not be

acceptable for most search tasks.
These severe decrements in accuracy with parallel

comparisons are robust for different metrics of activiry.
Figure 3 shows d' values determined for disnibutions based on
the average absolute value of vector activity as well as the
average sum of squares, for comparisons based on the hidden
and output layer.

An important issue relating to cortical architecture is
whether comparisons can be performed on the hidden or
output layer. There are three reasons to suggest that a module
would monitor the hidden rather than the output layer. First,
the output pyramidal cells often do not make synaPtic
connections within the layer. Second, if the output layer is
gated to control the output to the next level, the comparison
could not be performed until the vector is transmitted to the
next level of modules. Third, when the output layer is
ransrnittinS, the transmission to the higher level of modules
will interfere with any other potential signals. Performing the
comparison within the module allows other modules to

transmit to the higher level modules. This is analogotls to the
problem faced with data bus arbitration in computer
architectures. Each device on the bus limits is transmission
in order to allow other devices to transmit on the bus.
Typically in computers, each device makes a priority
assessment of is internal state without transmitting on the bus.
Data is transmitted only after the device activates a bus
request and is granted permission from the bus arbiration
logic to transmit the data. For all of the above reasons it is

important to determine if the match could be performed on the

hidden versus the output layer.

Flgure 3: The d' for the hidden and output layers is shown as a

function of the number of parallel comparisons. Two metrics of

acdviry are graphed: The average sum of the squared activiry of

the vecor units (SS), and the average sum of the absolute value

of the vector units (ABS). In all cases, d' decreases dramatically

if more than one comparison is made.

Figure 3 graphs the d' values for both thc hidden layer and

the output layer of the system. For both layers there is a
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robust deficit for multiple comparisons. The output layer does

show better match sensitivity for single comparisors (for

example, the d' of the average absolute value metric is 6.5

u.rro, 3.62). It is unclear how relevant the increased

detection sensitivify is because human sensitivity in search

tasks is gsually below 4. In funye investigations we will

determine how the hidden/output layer d' differences vary as

a function of the natgre of the squashing function (we used a

logistic on the output layer and a step function on the hidden

layer), vector size, and correlatiors among distractors and

targets. In the current data, d' was higher on the output layer,

but comparisons based on the hidden layer are in the range

rypical of human performance. Perhaps in cases where

crosstalk can be managed and accuracy is extremely important,

the more effortful comparison on the transmitted output is

beneficial. In any case, as Figure 3 illustrates, both the hidden

and the output layer show the harmful effects of multiple

comparisons on the probabiliry for error.

Levels of Feedback. The recurrent connections that are

ubiquitous throughout cortex iue represented by the auto-

association on the hidden layer in the model. As described

above, the feedback control element modulates the strength of

the recurrent signal within a module. Four different levels of

feedback were tested for each number of required parallel

comparisons, and results for the different conditions are shown

in Figwe 4. When only one comparison is made, the d' is

reasonably high for both the hidden and output layers at a

feedback level of 0.1, but falls off at feedback levels above

and below 0.1. The d' is below 1.6 for any case where

multiple comparisons are made, and feedback has very little

effect.
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Figure 4: The d' for the hiddcn and output layers for cach

number of parallel comparisons is shown as a function of lcvel of

feedback. The feedback element controls the strength of the

internal recurrent signal. For the optimum feedback level of 0.1

the d' measure is greatest, but it falls off with higher and lower

levels of feedback.

There are several reasons to include fecdback in thc modulc

making comparisons. First, input or hiddcn layer fcedback is

common in cortex. Second, fcedback is critical for latching

and holding signals, for the catcgorization of incoming

information, and for signal buffering during concurrcnt

Fansmissions (see Shcdden & schncider, 1990). Third,

feedback may enhance d' because the associative feedback

will strengthen previously learned vectors. Matching vectors

have a close resemblance to previously leamed vectors. In

contrast, mismatching pairs represent a blurding of features

that have not been learned in the auto-associative matrix.

Figure 4 shows the effect of the strength of auto-associative
feedback on detection sensitivity. Without feedback sensitivity

levels are low (d' of 2.74 and 2.15 for output and hidden

layers) and the error rates are higher (about lOVo) than those

typically observed in scanning experiments. Increasing
feedback to 0.1 improves comparison sensitiviry to d'

measures of 5.60 and 3.48 respectively for the outPut and

hidden layer for a single comparison. when feedback levels

are too high distortion of signals begins to occur' and

correlations between the actual and desired ouput vectors

drop. The noise in the distributions increases and it becomes

more difficult to detect a match. There appears to be an

optimun level of internal feedback which is high enough to

maintain signal strength and low enough to maintain signal

accuracy. The 0.1 feedback range that provided the best

comparison sensitivity in these simulations has been shown in

previous simulations to be best for signal maintenance
properties as well (see Shedden & Schneider, 1990 for other

simulations dealing with feedback).

Serial and parallel processing. In the present architecture,

to respond accurately, the system must serialize the

comparisons. For example, if four display items must be

compared to one memory item, the system inputs the first

display item and the one memory item into a single

comparator module. Then the second display item and the one

memory item are input to the comparator, continuing until the

fourth display item has been compared. In this way accuracy
can be maintained although processing time increases linearly
(a similar argument was made by Luce (1986, p.444) for
serializing comparisons in a limited short term memory). The
need for the serial processing of comparisons predicts the
varied mapping search data.

How can the transition to parallel processing in consistent

search (see Shiffrin, 1988) be explained in this architccture?
We assume that cach module can associate a priority tag for

cach lcamcd vector at the hidden layer levcl. If thcre is a

consistent relationship in which certain stimuli arc always
targcts, thcy come to evoke a high priority relative to thc

distractors. Each module makcs the priority asscssmcnt

intcrnally in parallel. If only one modulc has a high priority

it transmits first. The reaction time for thc first transmission

does not increase with the numbcr of stimuli. This model is

<letailed elsewhere (Gupta & Schneidcr, l99l) and provides a

good fit to practicc effccts in consistent scarch tasks.

Conclusions and SummarY
Although the architecturc of cortcx is vcry puallcl thcre arc

operations that must bc pcrformed serially. One of thesc

operaLions is the comparison proccss. This paper dcscribcd

simulations in a modular connectionist architccture



incorporating central features of cortical sb:ucture. The results

illustrate why a single comparator module cannot make

multiple comparisons and still maintain high accuracy.

Accurate performance requires high sensitivity (d') to the
presence of a signal, and multiple comparisons generate too
much noise for this to occur. In the present simulations
matches and mismatches could only be discriminated at human
performance levels if the comparisons were performed serially
with modest auto-associative feedback (0.1) on ttre hidden
layer. For single comparisons d' is high when measured on
either the hidden layer or the output layer of the network. The
d' measure is robust for different metrics of activiry, and is
sensitive to different levels of auto'associative feedback.
None of the simulations involving parallel comparisons
produced accuracy levels compatible with the human data. In
the prese,nt architecture, ev€,n if all the modules could uansmit
in parallel to higher levels, the systan would have to serialize
the comparisons to maintain acceptable accuracy levels. The

serialization necessitated in the current architecrure matches

the apparent serial processing of humans in varied mapping

memory and visual search. This set of simulations shows the

need for serial processing in parallel hardware.
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