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Abstract. The conneaionisVcontrol simulation of anendonal enhancement, signat maintenance,
and buffering of information is described. The system implements a tryUria connectionist
architecture incorporating auteassociation in the hidden layer anO gain controi on the hidden and
99tput layer. The stnrcture of the model parallels major features of modular cortical structure.
The attentional selection simulations show that as one channel is attenuated, the system exliUits
attentional capturB in which only the morc intense stimulus is transmitted to highir levels. The
signal maintenance simulations show that small levels of autoassociative feedbick can faithfully
maintain short bursts of input for extended periods of time. With high auto-associative feedback,
one module can buffer information from a previous transmission while rhe module blocks the
interference resulting from concurrent transmissions. The combination of auto-associative
feedback and gain control allow extensive control of information flow in a modular connectionist
architecturc.

This paper ex_amines signal control issues in a connectionist processing system. It examines three basic
cognitive operations of attentional enhancement, signal maintenanct, and bu-ffering of information. In human
processing thcse operations rcpresent control functions that are often associated witl mechanisms of attention.
Attention is the selection for processing of some subset of available information in the environment. For
example, when humans switch attention from one item to another there is an anentional capture effecr where they
percgivg on_e signal to the almost total exclusion of another signat (e.g., Treisman & Riley, lq19). Information
that is briefly.presented is maintained in a short-term sensory buffer thit is available for a iubstantiat period after
the sensory stimuli arc nemoved (e.g., Sperting 1960). Humans can also buffer information in short-t.i- memory
while encoding and acting on new information (Ktapp, Manhburn, & Lester, 1983).

Traditional Models of Attention. The mechanism of attentional focus has been a topic of interest to
psychologists for years (see Shiffrin, 1988). Broadbent's (1957, 1958) theory of selecrive attintion suggesrs a
filter mechanism, h which information from all channels is initially prooess.i in parallel, but at some [oinr in
the system informatio-n converges on a limited capacity channel. ftre inoOel originally stated that selection is all-
or-none' with no information being passed from other unattended channels. 

- 
Thd view was modified when

experiments showed that unattended information is available under some circumstances. Treisman's (1960)
attenuation model is a modification of the filter model. It states Orat botlr the attended and unattended channels
receive- processing' bY.t the processing in the attended channel is complete, and the processing in the unattended
channel is 'attenuated' to some degree. I-ater models have combined selective processing ;th [mited parallel
processing. The Shiffrin and Schneider (1977) model assumes there is a parallel processini of multiple cirannels
of consistent well learned information, and serial controlled processing of novel ot in.onrist nt infoimation. All
of these models assume some mechanism of attentional enhancement. From this perspective, the mechanism for
enhancement must still be determined.

Connectionist Models of Attention. Recently there have been several connectionist models of attention.
The present models simulate either the selection issue or enhancement issue. The Koch and Ullman (19g5) model
involves a winner-take-all hierarchical model to indicate which pathway is to be selected. The Mozer (l9Eg, and
Mozer & Behrmann, 1989) model involves a topographic multidimeniional hap, with anention represented as a
set of units that gate the flow of activity from l,ower-levels in proportig-n to thi strcngth of the atientional map.
The Cohen, Dunbar and McClelland (in press) model examines tire effect of the eni,-crent of the attended
channel via control _of the *{itg levels 

-of 
the attended and unattended pathways. The model is applied toperformance in the Stroop task. Our currcnt simulation examines the enhancement effect under trre assumption

that attention involves changing controt parameters of a connectionist module. The selection issue is not dealt
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with in this paper and will be addressed in future papers.

Physiolog5r of Attention. The idea of attenuation, or inhibition of an unattended, competing signal is
supported by physiological findings. Morur and Desimone (1985) measured the effects of anendon on single
cells in primate extrastriate visual corlex (area V4). Attention influences the output rate of V4 neurons as
measured with microelectrode recordings. The post-stimulus time histograms show a strong anendonal effect
(Moran & Desimone,l985 and personal communications Desimone). The effect of selective anention is the
attenuation of the signal from the unattended stimuli, and not an enhancement of the signal from the attended
stimuli. This attenuation is a lateral inhibition within the receptive field of the responding cell, and the reduction
in response of the unanended cells is to lR of the attended state. Thus, there is roughly a 3:l ratio of
attended/unanended signal. This ratio is an important one from a modeling standpoint, because it provides a
physiological bench mark against which to test the performance of the model.

Cortical neunoanatomy provides connection pattems and unit t)?es that can be a basis for models of
attentional frrnctioning. Most of cortex post the first sensory arcas (e.9., post Vl in vision) shows a simitar
layering of cells and cell tyAes. Studies of V2 cortex identify cortical conneclions and components (Lund,
Hendrickson, Ogren, & Tobi, l98l). Cortical processing appears to occur in a modular structure of columns
(Mountcastle 1979). The forward information flow passes through two layen of pyramidal cells and inputs into
layer 4, lhen to layer 2-3 pyranridal cells, and then out to the next module (see Lund et. al. l98l). The layer
4 cells connect recurrently to themselves providing a feedback path. In addition there are inhibitory interneurons
that are primarily within a layer. There is a special class of axon-axon inhibitory cells called chandelier cells
that attenuate large numbers of output cells (see Peten, 1984). This cell can inhibit the output of sets of
pyramidal cells. The fast large scale inhibitory effects of chandelier cells make them a good candidate for the
attenuation effects seen by Moran and Desimone (1985).
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FIGARE l: A connectionist model of cortical processing. It parallels the cortical processing in
tlat it is a two layer structure (input layer 4 and output layer 2,3). Input feedback and output
are controlled by n+,o inlibitory modulation units. Control signals are provided by report units
(layer 5,6) transmitting ir{ormation regarding the octitity and priority of the input to more central
control structures and irfiuencing the local gating of layer 23 activity. These control structures
are assumed to influence the feedback and gain sigruls within a module.

CAP2 Architecture. The CAP} architecture is a computer simulation environment designed to
implement a modular @nnectionist arctritecture incoqporating the major features of cortical processing to predict
human attentional effects. The model consists of a variable number of modules, unis, layen, and iontrol
elements, which can be combined to create several different connectionist architectural configurations. A module
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consists 9{ T input layer of units, an associative matrix, ttrd an output layer of units (see Figure l). Modules
can be added to the system in breadth, so that several input modules connecl to one output module. In addition,
modules can be added to the system in depth, creating several hierarchical layers.

Control elements are an impontant part of ttre CAP2 environment, and include internal feedback control,
output gain control, and module activity and priority rcpofts (see Schneider & Detweiler, 1987, for a discussion
of the activity and prioritl r€port). These control elements are scaler values derived from the activity of the
module itself, or assigned from outside the module, and act to modulate attentional processing. Feedback control
increases or decrcases the sEength of the signal already in the system. Gain control increaies or decreases the
strenglh of the output signal.

net input = (feedback * internal input) + (gain * extemal input)

The model includes standard connectionist layers with additional association and control effects. The
simulation described in this paper consists of npo modules connected hierarchically. Each module is a
connectionist network consisting of three layers, including the data input, the module input layer (standard
hidden layer in back propagation), and the output layer. Figure I shows the layers and connectioni. Each layer
has 50 units, and each unit in one layer is connecled by a set of weights to every unit in the adjacent layin.
The modtrles can be cascaded so the output layer of one module is the data input of the next. Learning of input
output panerns is accomplished via back propagation (see Rumelhart, Hinton, & Williams, 1986).

The system differs from a standard three layer network in that the hidden layer is connected through an
auto-associative matrix to itself (see connections for Layer 4 cells to themselves as well as layer 2-3 cells). The
auto-associative matrix is taught to reproduce the hidden layer using delta-rule learning (see McClelland &
Rumelhart, 1988).

The system includes control elements that modulate the output from one layer to the next. These control
elements are connecfed in a manner similar to the connections of cortical chandelier cells (e.g., one unit provid.ing
a scaler rcduction of the population of units to which it is connected). The two control uniti determine ieedbac[
and gain (right of Figure l). Manipulation of the feedback control element affects the strength of the signal
through the auto-association matrix. This allows the system to hold a signal after the erre-al input is tumed
off. The signal c$-be perPetuated by cycting through the auto-associative matrix. Control of the gain cell limits
the output of the information from one module to the input of the next. The model also includes report cells used
for determining where to switch attention and automatic processing within a module (see Sihneider 1985,
Schneider & Detweiler 1987). These however are not used in the current model.

Lcarning. The vector qpace for the simulation consists of ten input vectors and ten target vectors.
Activation levels have maximum values of 1.0, minimum values of -1.0, and a resting activation oiO.O. Input
vectors are of lengttr 50, urith initial activations set randomly to 1.0 or -1.0, and then clipped to 0.9 ot -'0.9
respectively for each unit. Target vectors are also of length 50, with initial activations set-randomly to 1.0 or
-1.0 for each unit. The set of dl input and target vectors are forced to have correlations below O.iS witfr x1t
other vectors in the set.

_ Inpg! vectors and target vectors are paired, and traioing of the nenpork consists of back propagation of
error (Rumelhart, et. d. 1986) after presentation of each input pattem. The activation funoion on tte output is
a logistic:

I
activation = ilJrettnPut

The weighs of the autoassociation matrix are changed using delta nrle learning (see McClelland &
Rumelhart, 1988), with the hidden layer vector as the input and the target. One epoch is defined as the
presentation of e1c! inpgt panern onse, although the presentation order is randomized for each epoch. The
network is trained for 15 epoclrs, at which point the system has leamed to a criterion of. l00Vo accuracy and
corrclations between output and target vectors are above 0.98 for each input pattern.

568



The network leamed 10, 50, and 100 vector pairs of 50 units each in 2, 7 and 13 epochs, perfectly
choosing the best matching rcsponse for the input. The correlation benveen output and target vectbn c[nibs morc
slowly reaching correlations of .98, .73, and .55 respectively. This performance illustrates the large potential
stomge- capacity of the model, which is important when relating model performanoe to brain performance. One
cortical hypercolumn has been estimated to contain tens of thousands of &[s (Mountcastte, t9f9), suggesting that
information is coded not as a single unit being on, but rather vectors in which a subset of units ai-tomeO on.
We have worked with 10, 25, 50 and 200 unit vectors and find the performance of the model works well with
large vectors. We use 50 element vecton that dlow coding of large numbers of vectors with mo* vectors
sholing little correlation. The 50 element veclors do not require the long simulation times of very large vectors.
All further testing discussed below is done with input and target vector sets of ten vecton each, aftjr baming
is completed.

Attentional Enhancement end Attentional Capture. A basic characteristic of attentional switching in
humans is the attentional caPture effect. As one moves anendon from one stimulus to another, there is a sudden
change from perception of the fint stimulus to perception of the second. One does not see a mixture of the two
stimuli. This is illustrated by observing a Necker cube. One perceives it in one orientation or the other, and
this perception may switch between orientations, but one does not see a gradual shift or a combination of the npo
orientations. This effect is one of the charaoeristics investigated in thG model.

gafn control

FIGURE 2: Diagram of anentiorul control between modules. The connections between modules
represent vectors. The gain control is a scaler multiplication of all the elements of the vector.
Each module connects to and receives from multipte modules. Attentional enlwicement of A
irwoh'es hoving a higher gain on the A module relative to the B module. Buffering invoives
lmding a message from A to X and storing the message in X white a second ̂ essig, is sent
from B to Y. Since B is connected to both X and Y the X module must hold the A ^rttig, during
the transmission from B (see text).

This simulation examines what is perceived when the relative signal strengh of the anended and
unattended message is altered. D*l the re_ceiving module get a clear signal of one oittre messages? At what
relative strength are the messages clear? Figure 2 illustrates the basic itructute of the model. ihe A and B
sie}ls -are.input to the X module. As the relative strength of the two inputs changes, the X module settles on
either the A or B signal. The two input vectors arc prcsented to the network simultaneously for eleven testing
trials. On each trial the gain (strength) of each vectoi is increased or decreased by 0.1, so that the total strengti
of both vectors is always 1.0. This is done for all combinations of two input vectors. Note the attentional
caPture tests were done with leaming turned off, using the auto-associative and normal associative matrices
developed in leaming the l0 vector patterns.
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The relative gains werc:

Trial: I
Vec A Gain: l.
Vec B Gain: .0

- The question being asked is what vector or combination of vecton will be received by the output
module? Accuracy is determined as the best match between output and target. Thus, if testing vector A, 

-the

trial is corrcct if the outp-ut has a_ higher correlation with target A than with any of the other-possible target
vectors. The left_panel of Figure 3 shows the accuracy measure and correlations for the au.og.d data over all
input pain, and shows that at a .7:.3 ratio, all vectors are accurately identified without contanrittation from the
interfering vector. Of more interest it - analysis of individual vector pairs, an example of which is shown in
the right Panel of Figure 3. Note that with a 0.1 change in rcIative strenglh there is a complete shift from
perfect recognition of the A vector to perfect recognition of the B vector. In every case a difference of 0.1 in
vector activation is enough to cause a shalp transition betrpeen the perception of vector A or vector B. There
is variability between vector pairs for the position of this transition point, and that accounts for the wider
crossover in the averaged data (Figurc 3, left panel).

2  3  4  5  6  7  8  9  l 0 l t
.9 .8 .7 .6 .5 .4 .3 .2 .1 .0
.l .2 .3 .4 .5 .6 .7 .8 .9 l.

o.3 0. 05 0.6 0.?
ryDcTok A GAni

o.! or 05 06
VDCT0R A Gern-

FIGURE 3: Attentiorwl Capture Efects. The left panel shows the averaged data for 45 vector
pairs, each pair presented simultaneously to the network. Total gain is always equal to 1.0. For
example, if the gain of vectorA = 0.7, then the gain of vectorB = 03. Shown are the best match
accuracy data and the correlation data. The right panel shows the data for a single vector pair.
VectorA and vectorB are presented simultaneously. Best match accuracy and correlation with
matching target vector are slrown for each vector at each level of gain.

The simulation shows a clear signal capture effect with only the stronger vector beit g perceived at a
strenglh ratio of 7 to 3. Recall that the anentional data from Moran and Desimone (1985) shows a required
differcnce of 3:l for the attended/unattended ratio, 3 point at which the current network provides clear capmre.
Note in this model.that although the attention effect involves graduat attenuation, the network interactions ptoduce
an all or none switch to the enhanced signal. All of these tests were with vectors with low correlations; we
exPect to see some mixture effects with more highly correlated vectors.

Sigtal Maintenance end Normatization. Much of perception involves the input of brief bursts of
information that can then be read out over a period of time. A brief visual stimulus can- be read out of iconic
storage for over a half a second (e.g., Sperling, 1960). One can fixate a stimulus briefly and then move one's
eyes and still recall the initial stimulus. The auto-associative ftedback common in cortex provides a mechanism
for maintait ing short duration signals. In this simulation this is implemented in the layer 4 auto-associative

r IYECTOn A AOCUMCY

o vEcToR A coRnELAnoN

' vEcmB t AocrrnAeY

n vrcron t ooRnEtlrloN
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connections' Feedback in this system provides a way to latch and hold a signal for some extended period of timeafter the extemal input has been turnid orr. If the stimulus burst is very short, feedback can act to boost thesignal and thercby normaliza the input.

. Input vectors arc presented to the network for 5 iterations, and then the stimulus is tumed off for another5 iterations' An iteration consis[ of -91e pass thr-oug! _rhe sysiem, from try;;il;on of rhe input vecror roproduction of the ouput vector. Five different levels of feedback are tested. The teft panel of Figure 4 showsthe activity of the hidden layer of units, and illustrates that rhe signal drops ""i q"i.uy with a feedback valueof 0'0 (maximum pols-ibl9 ictivity e.quats 1.0). e" r""au"ck incriases, activity also increases. At a feedbackvalue of 0'l the module holds astivity stable, acorrately maintaining the vector .rti"ity panern in the module.At feedback levels higher than 0.1-thi.activity continu"i to in.t"u",-bu1 the signalevoked begrns to stray fromthe desircd target, and the system begns to ;hauucinate,' 
or idenUfy stimuli which arc not there.

E
F

E
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ITERATIO^-S

FIGURE 4: I-atching and.holding a signal. Lefi panel data are averaged over all stimulusvectors' A stimulus vector is presented for 5 iteritions and then removedl, Activation la,els ofthe hidden layer are shown ai atXerent-lqels of feedback. Atfeedback of 0.0 the signat dropsout quickly' At feedback 9f 0tt the signal holdi.-At higher tevits of leediaik activity increases,but the accurocy of the signat beginslo e!:l?ror-e. R{ght panel iuuitrates stimuli presented foron$ one iteration. Activation_t7its of the hidlen layer"orrihon, for different lqels of feedback.At feedback of 0-0 t!t9 signal does not hold; but ai htgher-lqels of feedback activity increases,approaching nonnal levels by 4 or S iterations.

Feedback also allows the network to latch and increase the activity of a short burst stimulus. Inputvectors are presented to the system for l, 2, 3, or 4 iterations, and then the stimulus is nrmed off for 5 iterations.As can be seen in the right panel 9{ Figut" 4 which illysqatep . ring. iteration stimutus burst, without feedbackthe signal dies quicHy away. At high; levels of feedba;t rh. t-igr.t is latched and the activity level increases,approaching the strcngth of a normal signal after 4 or 5 iterationi.

signal Buffering 
{uTi"g ooncurrent loading. when attention is direaed to one location, the informationcan be buffered such that it is not destroyed -by attJntion moving to another location. ! reading for example,fixating one word does not clear rn.tory gf ;ll previous *oroi. The problem of buffering with concurenrloading is illustrated in Figure 2. Assume the A ina g modules both projecr to the X and y modules. If theA signal is transmined it Soes to both the X and Y modules. Physiologically, once a signal exits a corticalmodule it ouputs to all sites it is connected to. To buffer information oni ,nouio like to transmit the A signalto X and the B signat to Y. The problem is that transmitting the g signal to i proouces interfercnce in the Xmodule causing possible loss of infbrmation. The same problim occunihen seriatty loading a set of inputs thatmust be examined in parallel. In this case the A module must output to rhe X module for the first stimulus andthe Y module for the second. Since the A module is connected io both modules, it is critical that the secondtransmission to Y does not delete the previous signal to X.
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FIGURE 5: Signat maintenance with feedback. In lefi panel, on iterations 0 to 4 vectorA only
is presented. On iteration 5 feedback is increosed from 0.1 to 1.5. On iterations 5 to 9 vectorB
only is presented. Shov,n are best match accuracy for vectorA and vectorB, correlation with
targets for vectorA and vectorB, and activity of the hidden layer. The signal for vectorA holds
throughout. In riglu panel there is no feedback. The signal for vectorA dies out as soon as the

incoming stimulus is replaced with vectorB, and the signal for vectorB is increased.

The auto-associative feedback shown in this model provides a possible mechanism for signal buffering
during concunent loading. If the feedback is high enough, the module will maintain its signd and block out

competing signals. In the simulation, a stimulus vector (vectorA) is presented to the network for 5 iterations,
atlowing Oe strength of the vectorA signal to build within the module. On the sixth iteration feedback is tumed

up from 0.1 to 1.5, and a different stimulus vector (vectorB) is presented for 5 iterations. The increase in
feedback is sufficient to maintain the signal of vectorA without allowing any contamination from vectorB. The

left panel of Figure 5 shows the accuracy and correlations for both stimuli throughout the ten iterations. VectorA
remains the strong and accurate signal throughout, and the incoming vectorB does not have an effect. Compare
these results to the case (Figure 5, right panel) where feedback was not utilized (feedback = 0.0). In the case
where therc is no feedback the vectorA signal begins to die as soon as presentation of vectorA is replaced with

presentation of veclorB. The competing vectorB signal builds quickly and takes over the system.

Conclusion. The prcsent connectionist control architecture implements some major ftatures of cortical

s6lrcture. The control of the gain of the output of a module allows selective enhancement of one message by
attenuating competing messages. The attenuation of the unattended signal at levels rcPrcsentative of physiological

attenuation produces a strcng attentional capture effect. The use of auto-associative feedback provides a way to
control input at the receiving module. The auto-associative ftedback allows the system to maintain briefly
presented information for later output after the stimulus has ceased- The feedback control can also latch a signal
within a module and reduce the interferenoe of concurrcnt transmissions that are directed at other modules but
still input to that module. This architecture will be explorcd further to directly simulate human attentional effects,
and determine the computational performance of incorporating modem cortical connectivity in a modular
connectionist architecture.
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