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A B S T R A C T

On a daily basis, we constantly deal with changing environmental cues and perceptual conflicts and as such, our
brains must flexibly adapt to current demands in order to act appropriately. Brains become more efficient and are
able to switch states more readily by increasing the complexity of their neural networks. However, it is unclear
how brain signal complexity relates to behavior in young adults performing cognitively demanding executive
function tasks. Here we used multiscale entropy analysis and multivariate statistics on EEG data while participants
performed a bivalency effect task-switching paradigm to show that brain signal complexity in young adults in-
creases as task demands increase, that increases in brain signal complexity are associated with both speed gains
and losses depending on scalp location, and that more difficult tasks are associated with more circumscribed
complexity across the scalp. Overall, these findings highlight a critical role for brain signal complexity in pre-
dicting behavior on an executive function task among young adults.
1. Introduction

On a daily basis, we constantly deal with changing environmental
cues and perceptual conflicts and as such, our brains must flexibly adapt
to current demands. As brains develop, they increase both in efficiency
and complexity (McIntosh et al., 2008; Mi�sic et al., 2010). These two
concepts, while seemingly antithetical, actually pull in tandem. Brains
become more efficient and are able to switch states more readily by
increasing the complexity of their neural networks (Beharelle et al.,
2012; Garrett et al., 2012; for reviews see Deco et al., 2011; Grady and
Garrett, 2014).

Vitally, complexity should not be confused with random noise. By
analogy, a piece of music can be complex, containing evolving melody,
differing rhythms, and harmonies. Noise, by contrast, contains little to no
structure and is dimensionally, and acoustically, less interesting. In a
dynamic system, complexity can be useful in order to promote learning
and exploration which in turn builds novel neural pathways. For
example, Deco et al. (2011) suggest that brain signal complexity, or
spontaneous fluctuations in signal, allows for training of neural networks.
This spontaneous training strengthens the connections between neurons
in these networks and leads to brain microstates. Because brain signal
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complexity continues to promote the spontaneous training of networks
over time, these microstates will continue to become strengthened as
they are re-explored. As a result, brain signal complexity allows in-
dividuals to switch between brain states more readily - greater
complexity generates a greater number of network states that the brain
can then visit. In line with this reasoning, Beharelle et al. (2012) showed
that traumatic brain injury patients had less brain signal complexity than
healthy controls, and that brain signal complexity was associated with
greater accuracy and more stable responses on a visual feature-matching
task. Importantly, the relationship between complexity and behavior was
stronger for patients, suggesting that those with greater brain signal
complexity recovered more of their cognitive ability after injury.

Sample entropy is one way to measure brain signal complexity
(Richman and Moorman, 2000). Random noise has no structure or pre-
dictability - a single time point has no bearing on the following time
point. In contrast, sample entropy does follow logic and the repetition of
a signal can be modeled probabilistically. Sample entropy can be
measured on neural time-series such as EEG or MEG to estimate the
complexity (i.e. repeatability) of local and distributed networks
measured across fine and coarse-grained timescales, respectively. As
entropy can be measured at multiple time-scales (fine to coarse
ange Rd., Ames, IA, 50011, USA.
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1 Given the limited number of bivalent trials, it was possible that outliers were
contributing significantly to our findings. To address this issue, we identified
any bivalent trials that fell above or below 2.5 standard deviations from the
mean response time. Only one outlier was found (2.5 standard deviations below
the mean). Importantly, exclusion of this participant did not significantly affect
the results, and we therefore included all participants for completeness.
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gradations), it is distinguished from sample entropy as “Multi--
Scale-Entropy”, or MSE (Costa et al., 2002, 2005). We chose to use MSE
in the present study because it is more sensitive than other measures of
complexity. Several studies, particularly in fMRI research, have used the
standard deviation of the neural time series to estimate complexity, and
this measure of complexity is often very informative for developmental
outcomes (review in Garrett et al., 2013). However, consider the example
offered by Pincus et al. (1991) regarding heart-rate variability, which
illustrates why this metric may not always be ideal. Person 1's heart rate
alternates predictably as 90, 70, 90, 70, 90, 70, 90, 70, 90, 70, whereas
Person 2's heart rate fluctuates non-predictably as 90, 90, 70, 90, 70, 70,
70, 90, 90, 70. Both Person 1 and Person 2 have a mean of 80 and a
standard deviation of 10 beats per minute. But the time series are not the
same; Person 1's heart rate is predictable, whereas Person 2's heart rate is
not, and it is known that sequences such as that of Person 2's heart rate
are indicative of a healthier heart (Pincus et al., 1991). Thus, standard
deviation is one measure of complexity (entropy), but it does not capture
the full complexity of the signal.

Sample entropy, the measure of complexity used to create the multiple
time-scales in MSE analyses, is a probabilistic metric of complexity that
goes beyond standard deviations and can be distinguished from random
noise. Put simply (see methods for expansion), the procedure creates a
ratio using repetitions of N consecutive data points within a particular
amplitude range compared to Nþ1 consecutive data points across the
entire time series. More predictable sequences that produce smaller
sample entropy values are deemed less complex. As mentioned previ-
ously, MSE takes this further by estimating the complexity across mul-
tiple time scales and can speak to local vs. distributed processing (Wang
et al., 2018; Vakorin et al., 2011). For example, Wang et al. (2018) used
both EEG and fMRI data to examine the relationship between functional
connectivity and MSE and found that regional complexity was associated
with greater functional connectivity with other distributed resting-state
networks. We note that spectral power can also be used as a measure
of complexity, but previous work has shown that it is not sensitive to
certain dependencies within the neural time series to which MSE is
sensitive (McIntosh et al., 2008). Furthermore, Sheehan et al. (2018)
showed that sample entropy is independent of both spectral power and
spectral slope in its predictability of memory performance.

MSE increases in a linear fashion across development at all timescales
from ages 8 to 25 (McIntosh et al., 2008; Mi�sic et al., 2010), and this
increase in complexity is associated with greater accuracy and less var-
iable response times. As people enter old age, neural complexity patterns
measured by MSE also change. Compared to young adults, elderly in-
dividuals rely more on local neural networks at fine scales, and less on
distributed neural networks at coarse-grained scales (McIntosh et al.,
2014; Heisz et al., 2015). There is some evidence that these shifts may be
adaptive. When older adults shifted to local modes of processing they
experienced performance gains. Evidence from young adults, however, is
less clear. The shift in neural complexity experienced by older adults,
where high performing individuals rely more on local networks than low
performing individuals, was absent in a sample of younger adults per-
forming a simple perceptual matching task (McIntosh et al., 2014). Thus,
it is unclear how fine and coarse-grained brain signal complexity relates
to behavior in young adults who are at peak cognitive performance.

MSE studies with young adults suggest that increasing neural
complexity is associated with more accurate and less variable responses
(McIntosh et al., 2008), but whether this relationship is driven by coarse
or fine time-scales, or is undifferentiated, has not been explored since
previous studies collapsed across time-scales. Furthermore, it is unclear
whether the shift in complexity to more local neural networks, as is
observed in older adults, would appear in younger adults in more
demanding conditions. Past studies examining the relationship between
signal complexity and behavior have relied on tasks such as the 1-back
task or a very simple perceptual matching task (McIntosh et al., 2008;
Mi�sic et al., 2010; McIntosh et al., 2014) that may not be cognitively
demanding enough for young adults. As cognitive demands increase,
105
younger adults may, like older adults, shift from more distributed, global
processing, to rely more on local networks.

In the present study, young adult participants completed an executive
function task with three trial types of varying difficulty while EEG was
recorded in order to clarify the relationship between brain signal
complexity, task difficulty, and behavior.

2. Methods

2.1. Participants

The data presented here were re-analyzed from those presented in
Grundy et al. (2013). For clarity, with permission of the editors, we
largely reproduce the description of the methods here, noting any addi-
tions or changes made for the present paper. Data from twenty-four
young adult participants (mean age 20.30, SD¼ 3.48, seven males, 21
right-handed) from an event-related potential study were re-analyzed to
examine brain signal complexity. All participants were first-year students
recruited from McMaster University's Introductory Psychology under-
graduate program and received course credit. Data from one participant
was excluded from the original study due to an unknown corruption of
the original file during PLS analysis (see below). This study was approved
by the McMaster Research and Ethics Board and complied with the
Tri-Agency Research Integrity Policy.

2.2. Task and procedure

The bivalency effect task switching paradigm (Grundy et al., 2013;
Woodward et al., 2003; Meier et al., 2009) was used. This paradigm in-
cludes three trial types that vary in their level of difficulty: 1) purely
univalent trials that cue only one task and appear in blocks with only
univalent trials, 2) univalent conflict trials that are univalent trials
appearing in a block where occasional conflicting bivalent trials appear,
and 3) bivalent trials that cue two of the ongoing tasks even though only
one of the features is relevant for performance (see Fig. 1). Several
studies have replicated the robust finding that bivalent trials are the most
difficult, followed by univalent conflict trials, then purely univalent trials
(Grundy et al., 2013; Grundy and Shedden, 2014a, b; Meier and
Rey-Mermet, 2012; Woodward et al., 2003, 2008). For each trial type,
the primary outcome measures of interest were reaction times (ms) and
accuracy (proportion correct).

Participants completed two practice blocks of 168 univalent trials in
which individuals switched between three tasks (shape judgments:
whether the shape was red or blue, case judgments: whether the letter
was uppercase or lowercase, and parity judgments: whether the number
was odd or even). This was followed by an identical pure block in which
only univalent stimuli appeared, then by a block in which mostly uni-
valent trials (152 of the 168) appeared with occasional bivalent stimuli
(16 of the 168),1 and finally by another purely univalent block to account
for potential practice effects. The two pure univalent blocks were aver-
aged together. The reason for the extensive practice during this paradigm
is to ensure that participants were performing at ceiling on the easy trials
before encountering the difficult bivalent trials. For other task parame-
ters that are not the focus of this study, please see Grundy et al. (2013).

2.3. EEG collection

Scalp EEG data were collected with a 128-channel Biosemi ActiveTwo



Fig. 1. Executive function bivalency effect paradigm used in the present study.
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system (www.biosemi.com), with four additional electrodes placed at the
outer canthi and just below each eye for recording horizontal and vertical
eye movements. The sampling rate was set to 512Hz, and the signals
were bandpass filtered offline from 0.3 to 30 Hz. Signals were re-
referenced to the common average reference. The baseline used was
set to �200ms prior to stimulus onset. Epochs of interest were between
0 and 900ms after stimulus onset. Eye and motion artifacts were auto-
matically identified and manually verified using the EEProbe software
package (www.ant-neuro.com). Prototypes of eye movements were
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estimated for each individual and movement artifacts were subtracted
across the electrode array. This was based on calculated vertical electro-
oculogram (VEOG) propagation factors via a regression algorithm. Any
trials with motion or eye movements that could not be corrected were
removed from the analyses.

2.3.1. Brain signal complexity: multiscale entropy (MSE) analysis
We used MSE to assess brain signal complexity across multiple

timescales. Fig. 2 illustrates how to calculate MSE. The following text is
Fig. 2. Reprinted from Grundy et al. (2017).
Bilinguals have more complex EEG brain signals
in occipital regions than monolinguals. Neuro-
Image, 159, 280–288, with permission from
Elsevier. Calculation of sample entropy and
multiscale entropy using EEG brain signal.
Panel A shows how to calculate sample en-
tropy at each timescale. A criterion length m
(2 in the present study) defines a number of
consecutive data points in the EEG signal.
For length m ¼ 2 (starting with x and xþ1),
sum the number of times that two consecu-
tive data points occur within a pre-specified
amplitude range (r ¼ 0.5 in the present
study) across time in the EEG waveform.
Next, sum the number of times that three (m
þ 1) consecutive data points (starting with x,
xþ1, and xþ2) occur within the amplitude
range across time in the EEG waveform. This
procedure is repeated for each data point in
the time series (i.e., starting at xþ1, then
starting at xþ2, then starting at xþ3, etc.)
and all two-component matches and all
three-component matches in the entire data
series are summed together. Sample entropy
is the natural logarithm of the ratio of
two-component to three-component
matches. Panel B represents downsampling
of the original EEG data so that multiple fine
to coarse timescales are created. This is done
by averaging consecutive data points to
create a new data point that corresponds to a
coarser scale. This is done n times (in our
study n ¼ 20) and sample entropy is
re-calculated at each timescale. This creates a
series of fine to coarse grained entropy
scales. This figure was inspired by Fig. 1 from
Heisz et al. (2012).

http://www.biosemi.com
http://www.ant-neuro.com
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reprinted from the figure caption of Grundy et al. (2017), with permis-
sion from Elsevier: A criterion length m (2 in the present study) defines a
number of consecutive data points in the EEG signal. For length m¼ 2 (starting
with x and x þ 1), sum the number of times that two consecutive data points
occur within a pre-specified amplitude range (r¼ 0.5 in the present study)
across time in the EEG waveform. Next, sum the number of times that three (m
þ 1) consecutive data points (starting with x, x þ 1, and x þ 2) occur within
the amplitude range across time in the EEG waveform. This procedure is
repeated for each data point in the time series (i.e., starting at x þ 1, then
starting at x þ 2, then starting at x þ 3, etc.) and all two-component matches
and all three-component matches in the entire data series are summed together.
Sample entropy is the natural logarithm of the ratio of two-component to
three-component matches. Panel B represents downsampling of the original
EEG data so that multiple fine to coarse timescales are created. This is done by
averaging consecutive data points to create a new data point that corresponds
to a coarser scale. This is done n times (in our study n¼ 20) and sample
entropy is re-calculated at each timescale. This creates a series of fine to
coarse grained entropy scales, which represent local to more distributed
neural networks, respectively (Vakorin et al., 2011). Finally, in order to
avoid 20 levels of the scale factor in our ANOVAs, we binned scales 1–6 as
“fine”, scales 7–14 as “mid”, and scales 15–20 as “coarse”.

We chose our MSE parameters based on our previous work (Grundy
et al., 2017) and the work of others (Heisz et al., 2012) which showed
these parameters to be sensitive to changes in brain signal complexity
with task demands in young adults. A more detailed discussion of how to
choose MSE parameters can be found in Lake et al. (2002). See Heisz and
McIntosh (2013) for a nice video tutorial on how to apply MSE to EEG
data.

For both behavioral and MSE data, an average of all trials for each
participant for every condition was extracted for analysis.

2.4. Behavioral partial least squares analysis

Behavioral partial least squares analysis (PLS; see Krishnan et al.,
2011) was used to derive multivariate, data-driven patterns of whole
scalp entropy as it relates to behavioral measures. This technique de-
composes the data into a set of orthogonal latent variables (LVs) in a
single analytic step that maximally explains the covariance, in a manner
similar to principal components analysis. Consequently, PLS is particu-
larly well suited to the analysis of large data sets, such as neuroimaging
data, that would otherwise suffer from loss of power due to corrections
for multiple comparisons. We ran this analysis using the command line
extension of the PLSgui software (Shen, 2009; McIntosh et al., 1996;
McIntosh et al., 2004).

Conceptually, PLS is similar to canonical correlation, or principal
components analysis (PCA), with a few exceptions. Most notably, PLS is
particularly well suited to dealing with “wide” or rank deficient data (i.e.,
cases where there may be more variables, in this case electrodes, than
participants). Another notable feature of PLS is that, while PCA will
simply reduce the number of dimensions in the dataset, PLS attempts to
find the linear combination of features that maximally covaries with the
outcome measure (group, behavior etc.) Thus PLS is a “supervised”
technique such that the algorithm attempts to fit a target that the user
provides.

The inputs for behavioral PLS are brain and behavior matrices made
up of stacked condition-wise submatrices. The brain matrix contains
entropy observations (i.e., entropy values for each scale and electrode)
across the columns, while rows represent participants within condition.
The behavior matrix is similarly organized, and stores behavioral mea-
sures along the columns and participants within condition along the
rows. Both matrices were normalized within condition and then com-
bined through the multiplication of the transpose of the behavioral ma-
trix and brain matrix for each condition submatrix. The result is a
correlation matrix of stacked condition-wise submatrices. The rows of
this matrix correspond to each behavior input and the columns depict the
correlation between a given behavior and entropy observation from the
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original brain matrix.
Singular value decomposition is then performed on the resulting

matrix of correlations, yielding orthogonal LVs that are organized in
three outputs: brain saliences, design saliences, and a diagonal matrix of
singular values. The brain salience represents patterns that are most
strongly associated with the correlations found in the previous matrix.
The original brain data is projected on to these values and summed to
produce scalp scores. Scalp scores are values that indicate how strongly
each participant is associated with the particular LV, and these may be
averaged by condition to assess differences within the task.

Bootstrapping is performed to test the reliability of brain saliences.
The original saliences are divided by the standard error calculated from
the bootstrap sample to generate bootstrap ratios (BSRs), a standardized
score the is analogous to a z-score (Efron and Tibshirani, 1986). There-
fore, these BSRs may be considered reliable at the 0.05 level when they
reach a value of two. This bootstrapping procedure also constructs
bootstrapped confidence intervals around condition-wise scalp score
averages which allows for the reliability of condition differences to be
considered.

Permutation testing is also performed to assess the reliability of the
overall LVs. This generates a distribution that is true under the null hy-
pothesis. The original singular values are compared to these permuted
distributions and the LV is considered significant if less than 5% of the
new values exceed the original. For the current analysis, 500 bootstrap
and permutation samples were used.

2.5. Exploratory correlation analyses

Finally, we conducted exploratory analyses to better understand how
unified fluctuations in entropy were associated with each condition (pure
univalent, univalent conflict, and bivalent) at every timescale (fine, mid,
and coarse). We first computed pairwise Pearson correlations between all
128 electrodes across the scalp. To correct for multiple correlation tests,
we corrected each of the matrices using the Benjamini-Hochberg method
(8128 comparisons, q ¼ .05; Benjamini and Hochberg, 1995). We next
compared the matrices for each of the conditions within each scale bin
using the Steiger test (Steiger, 1980). This method computes a sum of the
squared difference between the two matrices. Similar matrices will
necessarily produce values near zero while those that differ will generate
a larger sum. This naturally forms a Chi-square distribution under the
null hypothesis, and therefore a test statistic may be derived. To explore
where the matrices differed for the most challenging condition, we
compared corresponding correlations between univalent conflict and
bivalent matrices using a dependent correlations test (Steiger's case B;
Steiger, 1980). This accounts for the dependence of each variable in the
two correlations being compared such that the covariance between all
pairwise combinations is accounted for. We chose this method given the
repeated design of the task and to also account for spatial correlation
amongst electrodes. This resulted in three heatmaps that depicted sig-
nificant correlation differences between univalent conflict and bivalent
conditions for each scale bin.

3. Results

For transparency and reproducibility, all behavioral and MSE data
used for the following analyses are uploaded to Figshare.com via the
following link: https://figshare.com/articles/The_relation_between_brai
n_signal_complexity_and_task_difficulty_on_an_executive_function_tas
k_data/8059907.

Unless otherwise stated, all post-hoc tests are Bonferroni corrected for
multiple comparisons.

3.1. Behavioral performance

We first analyzed how task performance, response times and accu-
racy, varied as a function of condition using two one-way ANOVAs

http://Figshare.com
https://figshare.com/articles/The_relation_between_brain_signal_complexity_and_task_difficulty_on_an_executive_function_task_data/8059907
https://figshare.com/articles/The_relation_between_brain_signal_complexity_and_task_difficulty_on_an_executive_function_task_data/8059907
https://figshare.com/articles/The_relation_between_brain_signal_complexity_and_task_difficulty_on_an_executive_function_task_data/8059907


J.G. Grundy et al. NeuroImage 198 (2019) 104–113
(Fig. 3). For accuracy, a main effect of condition was observed, F(2,
46)¼ 26.28, p< .001, ηp2¼ .53. We found this effect was driven primarily
by a relative drop in accuracy on bivalent trials, (i.e., accuracy was higher
on pure univalent, t(23)¼ 5.51, p< .001, d¼ 1.12, and univalent conflict
trials, t(23)¼ 4.83, p< .001, d¼ 0.99). Pure univalent and univalent
conflict trials did not differ, t(23)¼ 2.16, p¼ .12, d¼ 0.44.

Similarly, response times revealed a main effect of condition, F(2,
46)¼ 62.38, p< .001, ηp2 ¼ .73. Post-hoc comparisons revealed that all
conditions differed; participants were faster to respond to pure univalent
trials than univalent conflict trials, t(23)¼�5.88, p< .001, d¼�1.20,
and they responded to both univalent conflict trials, t(23)¼�7.62,
p< .001, d¼�1.56, and pure univalent trials, t(23)¼�8.22, p< .001,
d¼�1.68, faster than bivalent trials.
3.2. Multiscale entropy analyses

We investigated how brain signal complexity varied by condition
(pure univalent, univalent conflict, bivalent) and entropy scale (fine,
mid, coarse) using a two-way ANOVA (Fig. 4). The model revealed both
main effects of condition, F(2, 46)¼ 346.80, p< .001, ηp2¼ .93, and scale,
F(2, 46)¼ 274.00, p< .001, ηp2 ¼ .92.

Post-hoc comparisons revealed that entropy differed across all con-
ditions, with higher entropy on univalent conflict than pure univalent
trials, t(23)¼�7.92, p< .001, d¼�1.62, as well as higher entropy on
bivalent trials than both univalent conflict, t(23)¼�16.17, p< .001,
d¼�3.30, and pure univalent, t¼�23.96, p< .001, d¼�4.89, trials.
We also found that entropy varied across all scale bins, with higher en-
tropy on mid than fine scales, t(23)¼�17.73, p< .001, d¼�3.62, as
well as higher entropy on coarse scales than both mid scales,
t(23)¼�10.18, p< .001, d¼�2.08, and fine scales, t(23)¼�16.54,
p< .001, d¼�3.38.

The main effects were modified by a significant interaction between
condition and scale, F(4, 92)¼ 168.10, p< .001, ηp2 ¼ .88. Visual exam-
ination of Fig. 4 reveals that entropy is most similar across conditions at
the fine scale, but diverges at the mid and coarse ranges. We then tested
this observation empirically using two follow-up one-way ANOVAs
which we ran on difference scores between adjacent scale bins. This has
the effect of yielding a pseudo slope of entropy for each condition
allowing us to compare the rate of entropy change between conditions as
the scale increases.

We first compared the coarse and mid scales by condition (see
Fig. 4b), which approached, but did not meet conventional levels of
statistical significance, F(2, 46)¼ 3.83, p¼ .058, ηp2 ¼ .15, suggesting a
greater difference between these scales in the bivalent than the pure
univalent condition, t(23)¼�2.46, p¼ .07, d¼�0.50, but not between
the bivalent and univalent conflict or between the univalent conflict and
Fig. 3. Accuracy (a) and reaction times (b) plotted b
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pure univalent conditions, all ts< 2.0. We describe the pattern here to
highlight its similarity to the next analysis, but note that these statistics
did not reach conventional levels of significance and caution any over-
interpretation.

Our secondmodel examined how entropy changed across the mid and
fine scales by condition (see Fig. 4c). The main effect of condition was
significant, F(2, 46)¼ 313.70, p ¼< .001, ηp2 ¼ .93. Post-hoc tests
revealed that the difference between mid and fine-scale entropy differed
across all conditions. In increasing order of magnitude, the univalent
conflict trials had a greater difference between entropy scales than the
pure univalent condition, t(23)¼�6.49, p< .001, d¼�1.33, and the
bivalent condition had a greater change in entropy than the univalent
conflict trials, t(23)¼�16.65, p ¼< .001, d¼�3.40.

This pattern of findings suggested that task difficulty was associated
with increased entropy from fine to mid scales (see Fig. 4c), but that the
most effortful condition, bivalent, was associated with a much larger
effect (see inset Cohen's d measures for relative difference between
conditions).

3.3. Individual performance and entropy

To examine whether greater levels of complexity at fine scales are
related to better performance in young adults when task demands are
sufficiently high, we ran a three-way ANOVA in which we compared
condition, scale, and individual performance (high vs low; calculated
using a median split of efficiency scores (RT/proportion correct) that
account for speed-accuracy tradeoffs (Townsend and Ashby, 1983).

Replicating our earlier findings, there was a main effect of condition,
F(2, 44)¼ 348.04, p ¼< .001, ηp2 ¼ .94, and all conditions differed, (all
ts> 7.50). We also found an effect of scale, F(2, 44)¼ 269.18, p¼< .001,
ηp2 ¼ .92, with entropy greatest at coarse scales and lowest at fine scales
(all ts> 10.00). Moreover, the interaction between condition and scale
remained significant, F(4, 88¼ 164.70, p ¼< .001, ηp2 ¼ .88. Critically,
the effect of individual performance was not significant, F(1, 22)¼ 0.13,
p¼ .72, ηp2 ¼ .01, nor were any interactions with this variable (all
Fs< 1.10), suggesting that individual performance was not associated
with the trajectory of multi-scale entropy on this cognitively demanding
task.

3.4. Partial least squares analysis

We next ran a multivariate behavioral PLS analysis in order to assess
how entropy, condition (e.g., univalent, univalent conflict, bivalent), and
behavior covaried across all scales. As noted earlier, PLS computes these
relationships in a single step, thus obviating the need for multiple com-
parison correction. Reliable covariance patterns between condition,
y condition. Error bars represent standard error.



Fig. 4. Level of entropy by scale and condition. Error bars represent standard errors. *p< 0.05, ~ p¼ 0.058.
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entropy, and behavior were assessed with bootstrap ratios (BSRs, see
Fig. 5a). We also projected BSRs onto topographic electrode space for
fine, medium, and coarse scales to aid interpretation. Negative BSRs
represent regions where entropy is associated with slower response times
and positive BSRs are associated with faster response times across all
three conditions.

The analysis reduced the dimensionality of the dataset to a single
significant LV that maximally explained brain-behavior relationships.
Negative BSRs formed the more prominent pattern, comprising most of
the scalp topography, with both left and right frontotemporal as well as
left and midline posterior sites most represented, across all time scales.
Positive BSRs were found to occupy left-lateralized frontal electrodes
during fine and middle time scales. Scalp score loadings by condition and
109
behavior (Fig. 5b) indicated that accuracy and RT loaded opposite to
each other such that there was tendency for faster response times and
more accurate responses in left frontal regions (warm regions) for fine
and mid-scale entropy, but slower and less accurate responses across
various locations across the scalp at all timescales (cool regions). How-
ever, accuracy was not reliably associated with entropy produced by the
analysis given that the confidence intervals overlapped with zero.
3.5. Exploratory analysis: task-based entropy coupling

While Bonferroni adjustments were applied to correct for multiple
comparisons in the other manuscript sections, the False-Discovery-Rate
correction methods was used here due to the large number of
Fig. 5. Bootstrap ratios across electrode and time
scale (a). Scalp score loadings across all electrodes.
The topographies at the top represent the binned
(fine, mid, and coarse) scales across the scalp. (b)
indicate how BSR patterns correlate with behavioral
performance by condition. Negative BSRs represent
regions where entropy is associated with slower
response times and positive BSRs are associated with
faster response times across all three conditions. Error
bars represent bootstrapped 95% confidence intervals.
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correlations and the exploratory nature of the analyses in this section.
We investigated entropy region-to-region coupling across condition

and scale bin using thresholded correlation matrices (see Figs. 6–8).
Across these matrices, the predominant pattern that emerged was that
less effortful univalent conditions were associated with widespread pos-
itive coupling between electrodes compared to the more challenging
bivalent condition which was associated with a much sparser pattern of
covariance. Univalent conditions yielded a dense pattern of reliable
correlations across the scalp. By contrast, the bivalent condition was
associated with only a few reliable clusters of correlations. This pattern
was replicated across all three scale bins. The major clusters of connec-
tivity within the bivalent condition that were revealed from the analysis
were between occipital and right parieto occipito electrodes, parietal
midline, and right-mid parietal electrodes, as well as correlations within
right temporal lateral electrodes, and finally within occipital electrodes.

Differences between the conditions were tested by comparing each
correlation matrix within each scale bin (see Table 1).

This pattern of results confirms that while both univalent conditions
were associated with similarly strong patterns of whole-scalp coupling,
the more effortful bivalent condition drastically altered this pattern,
reducing widespread connectivity to more constrained regional coupling.
To provide a spatial representation of where differences were most
prominent, the difference between the univalent conflict and bivalent
conditions for each pairwise correlation was tested. The result is a
heatmap depicting where reliable differences are found between the
original condition matrices (Fig. 9). Differences were most reliable be-
tween these conditions at mid and coarse scales in correlations between
right temporal and parieto occipital sites.

4. Discussion

In the present study, we sought to clarify the relationship between
brain signal complexity and behavior in young adult participants per-
forming an executive function bivalency effect task (Grundy et al., 2013).
Several important findings emerged. 1) Brain signal complexity was
Fig. 6. Correlation between electrodes at fine scales. Raw r values appear in the top r
generally to posterior, right, anterior, and left electrode scalp sites. Colors in the top
White represents no correlation. The largest reliable cluster grouping across timescale
bottom panel represent the significance of the p-value associated with the correlation
0.05. The correlations in the top panel represent the full range of uncorrected correlat
are thresholded at an FDR p< 0.05 level.
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greatest in the most difficult conditions. 2) Across all trial types that
varied in level of difficulty and across all timescales, greater brain signal
complexity predicted faster and slower response times depending on
scalp location, but signal complexity was not associated with accuracy. 3)
Contrary to our hypothesis, better performing individuals did not show a
shift from coarse to fine scale entropy on more difficult tasks. As task
difficulty increased, however, brain signal complexity instead decoupled
across the scalp. These findings have important implications for how
brain signal complexity relates to behavior in young adults.

Brain signal complexity increased in a linear fashion as task difficulty
increased, with greatest signal complexity for the most difficult bivalent
trials and least signal complexity for the easiest purely univalent trials. To
our knowledge, this is the first time that multiscale entropy has been
related to task difficulty on an executive function task. The pattern was
most reliable for fine and mid timescales, reflecting more local than
distributed neural network processing. These findings might be
explained by previous work showing that brain signal complexity might
reflect greater knowledge representations. For example, Heisz et al.
(2012) found that brain signal complexity was greater for familiar than
unfamiliar faces and that learning faces also led to greater brain signal
complexity. Similarly, Mi�sic' et al. (2010) found that upright faces were
more complex than inverted faces and upright faces presumably have
relational properties between features that inverted faces do not. Bivalent
trials in the present study contained two types of information,
task-relevant features, and task-irrelevant features and thus had greater
knowledge representations than purely univalent trials with only one
task-relevant feature.

The finding that greater brain signal complexity was associated with
faster performance in left-lateralized frontal regions of the scalp is
roughly in line with previous research from McIntosh et al. (2008) who
showed a strong positive relationship between signal complexity and
performance. However, across multiple regions of the scalp (the negative
BSR values in Fig. 5) and across all timescales, brain signal complexity
was associated with slower response times as well. Furthermore, unlike
McIntosh et al., brain signal complexity in the present study was
ow while corrected p-values are reported in the bottom row. A, B, C, and D refer
panel represent positive (warm colors) and negative (cool colors) correlations.
s for the bivalent condition is highlighted in the magnified section. Colors in the
s, from 0.05 (red) to< 0.01 (yellow). Black represents non-significant p-values >
ions whereas the p-values associated with those correlations in the bottom panel



Fig. 7. Correlation between electrodes at mid scales. Raw r values appear in the top row while corrected p-values are reported in the bottom row. A, B, C, and D refer
generally to posterior, right, anterior, and left electrode scalp sites. Colors in the top panel represent positive (warm colors) and negative (cool colors) correlations.
White represents no correlation. The largest reliable cluster grouping across timescales for the bivalent condition is highlighted in the magnified section. Colors in the
bottom panel represent the significance of the p-value associated with the correlations, from 0.05 (red) to< 0.01 (yellow). Black represents non-significant p-values <
0.05. The correlations in the top panel represent the full range of uncorrected correlations whereas the p-values associated with those correlations in the bottom panel
are thresholded at an FDR p< 0.05 level.

Fig. 8. Correlation between electrodes at coarse scales. Raw r values appear in the top row while corrected p-values are reported in the bottom row. A, B, C, and D
refer generally to posterior, right, anterior, and left electrode scalp sites. Colors in the top panel represent positive (warm colors) and negative (cool colors) corre-
lations. White represents no correlation. The largest reliable cluster grouping across timescales for the bivalent condition is highlighted in the magnified section. Colors
in the bottom panel represent the significance of the p-value associated with the correlations, from 0.05 (red) to< 0.01 (yellow). Black represents non-significant p-
values < 0.05. The correlations in the top panel represent the full range of uncorrected correlations whereas the p-values associated with those correlations in the
bottom panel are thresholded at an FDR p< 0.05 level.
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associated with response times rather than accuracy. This was surprising,
but it is possible that the nature of the task being used dictated this shift.
McIntosh et al. used a one-back working memory task that is not as
111
cognitively demanding as the task-switching paradigm that we used.
Consider that a one-back task requires only a decision about whether the
last picture was the same as the current picture and requires very little



Table 1
Chi-Squared significance testing results for differences between correlation matrices within each scale bin in the exploratory analysis of task-based entropy coupling.

Fine Mid Coarse

Bivalent vs.Pure Univalent χ2(8128)¼ 111358.86, p< .001 χ2(8128)¼ 10174.38, p< .001 χ2(8128)¼ 10400.02, p< .001
Bivalent vs. Univalent Conflict χ2(8128)¼ 11156.31, p< .001 χ2(8128)¼ 10772.78, p< .001 χ2(8128)¼ 12771.12, p< .001
Univalent Conflict vs. Pure Univalent χ2(8128)¼ 3175.10, p> .05 χ2(8128)¼ 3668.91, p> .05 χ2(8128)¼ 4290.20, p> .05

Fig. 9. Corrected correlation differences between univalent conflict and bivalent conditions at each scale bin. A, B, C, and D refer generally to posterior, right,
anterior, and left electrode scalp sites. Colors represent the significance of the p-value associated with the correlations, from 0.05 (red) to< 0.01 (yellow). Black
represents non-significant p-values < 0.05. Correlations are thresholded at an FDR p< 0.05 level.
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demands on working memory, with no need to update working memory
as you would in a more demanding two-back task. On the other hand, the
paradigm used in our study required individuals to hold in mind task-sets
for three separate tasks. Furthermore, bivalent trials require one to focus
attention on task-relevant features while ignoring task-irrelevant features
and this is cognitively demanding. The change in task difficulty may have
led to a shift from brain signal complexity relating to accuracy to brain
signal complexity relating to speed. It is also possible that this shift is a
result of using a continuous memory updating task in one case and a
continuous task-switching paradigm in the other, rather than solely
cognitive demand. Thus, it may be a qualitative rather than a quantitative
difference. While the shift from accuracy to RT still requires explanation
and warrants further investigation, it highlights how brain signal com-
plexity's relationship with behavior depends on the nature of the task.

Contrary to our hypothesis, high performers and low performers had
similar brain signal complexity profiles. That is, there was no shift for
high performers to show more fine scale and less coarse scale entropy
than low performers. This finding replicates the results of McIntosh et al.
(2014) who, again, used a relatively less cognitively demanding task.
Thus, using more local neural networks does not appear to benefit young
adult performance, even when task demands are increased. It is possible
that a shift to more local neural networks in older adult populations may
not be indicative of healthy aging, as previously suggested (McIntosh
et al., 2014), but rather a requirement as the brain starts to deteriorate.
Those who do not make this shift may perform worse behaviorally,
explaining previous findings in which low performing elderly show less
fine-scale and more coarse scale entropy than high performing elderly. It
must be noted however that Heisz et al. (2015) showed that older adults
who are more physically active also show a shift to more local complexity
than less physically active individuals and physical activity is believed to
112
slow cognitive decline (see Sofi et al., 2011 for a meta-analysis of pro-
spective studies). It is possible that physical activity allows one to make
the required shift from global to local information processing earlier, but
such a claim requires further investigation.

Although it is clear that our low performers and high performers did
not differ in terms of brain signal complexity profiles, our exploratory
analysis examining the relationship between brain signal complexity
across the scalp revealed a pattern that may be in line with more local
processing as task demands are increased. On the easiest tasks, brain
signal complexity was highly correlated in an undifferentiated manner
across most electrodes. By contrast, on the most difficult task where
conflict was present (the bivalent trials), brain signal complexity was far
more circumscribed. In short, easier conditions were associated with
greater overall connectivity, and less specificity between regions whereas
conditions requiring focused control were associated with localized,
modular, coupling between regions in the parietal and occipital scalp
regions. In graph-theory, a modular brain organization can reflect
specialized processing, and higher modularity tends to be a characteristic
of younger, and healthier, functional brain networks (Arnemann et al.,
2015; e.g., Brier et al., 2014). Relative to young adults, older adults tend
to experience a breakdown of the functional units (modules), as func-
tional regions bleed into one another and become dedifferentiated
(Zheng et al., 2018) while at the same time, large-scale functional net-
works also start to decouple (Andrews-Hanna et al., 2007). There is some
suggestion that this dedifferentiation might be compensatory (Cabeza,
2002; Davis et al., 2008), however, other evidence suggests that older
people who maintain a more “youthful” brain organization also perform
better on cognitive tasks (Grady et al., 2010). Thus while our original
hypothesis which predicted a global shift from coarse to fine entropy as
task demand increased was not borne out in the data, our subsequent
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exploratory analyses of correlation organization seem to support the shift
to local, highly connected modules during demanding tasks. Our two
findings are not necessarily incompatible since “global” and “local”
processing are defined differently. Our initial hypothesis focused on
global versus local processing as intrinsic properties of coarse and fine
scales. By contrast, our follow-up exploratory analysis tested global and
local properties more directly by comparing the sparsity of the correla-
tion matrices at varying scales. Our findings point to functional reorga-
nization in young adults as task difficulty increases, though we note that
this should be independently replicated given the exploratory nature of
the analysis.

5. Conclusion

Brain signal complexity is increasingly becoming a useful metric by
which to examine network efficiency (Beharelle et al., 2012; Deco et al.,
2011), knowledge representations (Heisz et al., 2012), and distributed
vs. local neural network processing (McIntosh et al., 2014; Vakorin et al.,
2011). Here we add to the growing body of literature by showing that
brain signal complexity in young adults increases as task demands in-
crease, that increases in brain signal complexity are associated with both
speed gains and losses depending on scalp location and that more diffi-
cult tasks are associated with more circumscribed complexity across the
scalp. Overall, these findings highlight a critical role for brain signal
complexity in predicting behavior on an executive function task among
young adults.
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