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In this paper, we use behavioural methods and event-related potentials (ERPs) to explore the relations
between informational and instantiated features, as well as the relation between feature abstraction and
rule type. Participants are trained to categorize two species of fictitious animals and then identify per-
ceptually novel exemplars. Critically, two groups are given a perfectly predictive counting rule that,
according to Hannah and Brooks (2009. Featuring familiarity: How a familiar feature instantiation
influences categorization. Canadian Journal of Experimental Psychology/Revue Canadienne de
Psychologie Expérimentale, 63, 263–275. Retrieved from http://doi.org/10.1037/a0017919), should
orient them to using abstract informational features when categorizing the novel transfer items. A
third group is taught a feature list rule, which should orient them to using detailed instantiated features.
One counting-rule group were taught their rule before any exposure to the actual stimuli, and the other
immediately after training, having learned the instantiations first. The feature-list group were also
taught their rule after training. The ERP results suggest that at test, the two counting-rule groups pro-
cessed items differently, despite their identical rule. This not only supports the distinction that infor-
mational and instantiated features are qualitatively different feature representations, but also implies
that rules can readily operate over concrete inputs, in contradiction to traditional approaches that
assume that rules necessarily act on abstract inputs.
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Researchers investigating categorization and
concept formation have traditionally treated an
exemplar’s features as comprising two classes of
information. Features could be category relevant,
in which case they helped define an item as a
member of a category, or features could be idiosyn-
cratic, in which case they helped define an item as

an individual. Category-relevant features have typi-
cally been treated as generic features, while individ-
uating information is equated with the specific
perceptual form of features (e.g., Medin, Dewey,
& Murphy, 1983; Regehr & Brooks, 1993). By
“generic feature” we mean the feature content that
holds constant not only across different exemplars,
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but even across different categories. Cats, dogs, and
monkeys all have paws—there is a set of properties
common across all these end-limb structures such
that it is meaningful to call them all “paw”
(Figure 1); “paw” defined this way is a generic
feature. Brooks and Hannah (2006), however,
argued that the specific perceptual forms of features
found in natural categories also carry category-rel-
evant information because such forms are typically
category specific. The paws of individual cats look
quite different in terms of the details of their
appearance—what we call “feature form”—from
the paws of dogs or monkeys, and the paws of indi-
vidual cats look similar in detail to one another,
especially when compared to those of other
animals. That feature forms are category specific
makes them sufficient for categorization, and this
give feature forms great potency: The briefest
flash of a cat’s paw lunging around a corner is suffi-
cient to tell you what creature lies in wait for your
toes.

Concept formation and category use are served,
argued Brooks and Hannah (2006), not only by
mental representations capturing the generic fea-
tures (“informational features”), but also by
mental representations capturing the feature form

(“instantiated features”). We may loosely think of
instantiated features as feature instances and infor-
mational features as something like feature
prototypes.

Consider Figure 1: At the top are a number of
paws, all from the same category, that of “cat”.
We could represent the fact that cats have paws
by a mental representation of one of the specific
feature forms in the top row, say, paw in the left-
most picture. Such a mental representation would
be an instantiated feature. However, along the
bottom are a number of paws from different cat-
egories, each manifesting a strikingly different
specific form. Despite their differences, however,
there is some paw information present in each of
these different paw types. We could represent the
fact that cats have paws with a mental represen-
tation of this generic paw information. Such a
mental representation would be an informational
feature.

If category-relevant feature information is found
across multiple levels of abstraction, as suggested by
Brooks and Hannah (2006), then several questions
become important. For example, we need to ask
how the contents of informational features relate
to the contents of instantiated features, and thus

Figure 1. A feature, such as paw, has a specific form that is typically category specific in natural categories (top row). However, most natural

features also embody more generic information that is only apparent when comparing across categories (bottom row). We can represent the

feature of a category in terms of either its specific feature form or its generic content.
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how informational features may be generated from
the specific forms encountered. One possibility is
that informational features are generated automati-
cally as a sparser, or fuzzier, version of some corre-
sponding instantiated feature. That is,
informational features may be broadly analogous
to Brainerd and Reyna’s (1990a, 1990b, 1996;
Reyna & Brainerd, 1995) gist traces of fuzzy-
trace theory, while instantiated features would be
similar to verbatim traces. The two classes of
feature representation would differ only
quantitatively.

Alternatively, informational features could
emerge out of a more deliberate comparison
across features that have been aligned across a set
of relevant dimensions so as to reveal commonal-
ities, differences, and relations across the set. This
would produce informational features that capture
qualitatively different information from that
carried by instantiated features. Structural align-
ment as a means of determining similarities has
been an influential idea emerging out of the work
of Gentner and Markman (e.g., Gentner &
Markman, 1997; Markman & Gentner, 1993,
1997), and this has been extended to account for
the emergence of some types of abstractions.
Gentner and Medina (1998) argued that generic
constructs such as rules could emerge from such a
process of aligned comparison, and Yamauchi
(2009) has more recently argued that abstract
feature representations require aligned comparisons
as well. If informational features emerge from some
sort of deliberate comparison, then the two classes
of feature representation should differ qualitatively.

In this paper, we use behavioural and electro-
physiological methods to clarify the relation
between informational and instantiated features.
In order to see differential responding to informa-
tional and instantiated features, we need transfer
materials that allow decision making to be influ-
enced by either instantiated or informational fea-
tures. That is, we need transfer items that have
one or more features similar or identical to features
learned in training, as well as transfer items
without any such perceptually familiar features.
To do this, we modify the training and transfer
materials used by Brooks and Hannah (2006;

Hannah & Brooks, 2006, 2009). Event-related
potential (ERP) responses may prove even more
sensitive to these processing distinctions than be-
havioural measures. People reliant on instantiated
features to make decisions may show an effect of
transfer item in their ERP activity after initial per-
ceptual processing but before response program-
ming, while those reliant on informational
features should show no such intermediate-to-
late effect.

If informational and instantiated features differ
only in the amount of detail they capture, then
we would expect to see similar behavioural and
ERP responses across transfer items regardless of
whether people are reliant on informational or on
instantiated features to make their categorization
decisions. However, if informational features are
qualitatively different from instantiated features,
then we would expect that people reliant on infor-
mational features should show different ERP
responses compared with those reliant on instan-
tiated features. As this is exploratory work, it is
unclear what form these ERP differences may
take; to guard against biases introduced by a
visual examination of electrode activity, we selected
electrodes for analysis using an objective technique
called partial least-square analysis (PLS; McIntosh,
Bookstein, Haxby, & Grady, 1996).

In order to carry this analysis out, we need to
have a means of identifying or generating partici-
pants reliant on informational features and partici-
pants reliant on instantiated features when making
categorization decisions. Brooks and Hannah
(2006; Hannah & Brooks, 2006, 2009) have
argued that the different feature types have differ-
ent relations with types of rules. Thus, by giving
people different types of rules to use, we hoped to
create participants reliant upon different types of
feature representations. This manipulation
allowed us to explore the relations between rules
and feature representations as a secondary topic.

Types of features are related to types of rules

Sloman (1996, p. 5) argued that, “Rules are abstrac-
tions that apply to any and all statements that have
a certain well-specified, symbolic structure. Most
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important, they have both a logical structure and a
set of variables.” Thus, rules are (a) abstractions (b)
operating on abstractions (“symbolic structure”)
and (c) have a logical organization that determines
a specific integration of inputs. The inputs, being
variables, vary in their specific instantiation, and
therefore what rules act on is the abstract content
of these variable inputs: Rules must operate on
abstract inputs. In Brooks and Hannah’s (2006)
terminology, rules must operate on informational
features.

Applied to the categorization of physical objects,
this view of rules implies a process in which percep-
tual inputs are transformed into abstract symbols
and integrated by a logical structure, leading to an
inevitable answer. For example, the rule “If an
animal has two of rounded head, rounded torso,
striped coat or two legs, then it is a bleeb”, will
always produce the categorization “bleeb” whenever
a creature with at least two of those four features is
encountered, and will never produce the category
“bleeb” if only one of the listed features is encoun-
tered in an animal. Brooks and Hannah (2006)
called this a “strong rule”, because it specifies how
features are combined—in this case, by counting
features—to lead to a decision. If some of the
bleeb-type features are encountered in another
creature, our counting rule will distinguish the
pseudo-bleeb from the true bleeb. This is the
result of the “logical structure and a set of variables”
that Sloman (1996) emphasizes.

When asked to define natural categories,
however, people frequently provide simple feature
lists (Rosch & Mervis, 1975)—for example: “A
bleeb usually has a rounded head, rounded torso,
striped coat or two legs.” If we assume that there
is some implicit logical structure to such feature
lists, perhaps an unstated counting rule, then such
definitions are unproblematically rules. Brooks
and Hannah (2006), however, argued that such
feature lists are just what they appear to be: a list
of features without any implicit logical structure
for integrating the features into a conclusion.
These work for a person generating the list
because the features named are the category-
specific, and hence sufficient, feature forms used
to make decisions. Feature lists, argued Brooks

and Hannah, are pointers to the instantiated fea-
tures a decision-maker has relied on. Nonetheless,
they perform rule-like functions, most especially
by providing a scaffolding for learning by directing
attention to key regions. If you are told a bleeb has a
rounded head, you are unlikely to know precisely
what a bleeb’s head look likes. You are likely,
however, to know enough about rounded heads to
have some broad parameters as to what a bleeb
head should look like, and to know where to look
to confirm its actual shape. Thus, Brooks and
Hannah called feature lists “weak rules”.

For the rest of this paper, we refer to strong rules
as “counting rules”, as these are the only type of
strong rules we explore. Similarly, we will refer to
weak rules as “feature lists”, as these are the only
type of weak rules we explore. However, readers
should keep in mind that other forms of strong
and weak rules are possible.

Hannah and Brooks (2009) explored the
relations between feature and rule types; they
trained people to classify four species of fictitious
animals and then transferred them to classifying
novel exemplars. They found that participants
who provided counting-rules after the transfer test
behaved largely as if they were adding up the fea-
tures they detected and erring by missing features.
In contrast, participants who provided feature lists
seemed to weight features by their “goodness”, or
recognizability. Such a feature-goodness heuristic
would be easier to apply when working with instan-
tiated features rather than informational features
because informational features are sparse and invar-
iant—any rounded-head informational feature is
identical to, and thus just as good as, any other
rounded-head informational feature.

Further, Hannah and Brooks (2009) gave a
group of yoked participants the counting rules or
feature lists generated by other participants, but
denied these yoked participants exposure to the
training stimuli prior to the classification task.
Thus, the only source for learning about the cat-
egories came through the provided rules, and not
through any perceptual experience. Importantly,
the yoked participants who were given feature
lists behaved identically to the counting-rule pro-
ducers and showed no evidence of the feature-

THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2016, 69 (11) 2169

FEATURES ACROSS LEVELS OF ABSTRACTION



weighting typical of the people who had generated
the provided feature lists. It appeared, therefore, as
if a feature-weighting strategy requires a stock of
instantiated features. The yoked feature-list classi-
fiers, operating without such a stock, seemed to
have interpreted the provided feature lists as
implicit counting rules.

Hannah and Brooks (2009) suggested, there-
fore, that counting rules work on informational fea-
tures, as Sloman (1996) suggested, because
informational features tend to overlap across cat-
egories (e.g., four legs is a possible feature across
multiple categories), creating confusions that
necessitate an explicit rule for integrating features.
That counting rules reflect how features are distrib-
uted implies a looser relation between rules and
feature representations than the description given
by Sloman, for whom counting rules are necessarily
linked to informational features. Instead, Hannah
and Brooks are suggesting that counting rules are
only contingently related to informational features.
In contrast, the category-specific nature of instan-
tiated features does not typically result in feature
overlap across categories and therefore does not
demand a logical structure to resolve conflicts as
no conflicts exist. Instead, the sufficiency of instan-
tiated features means that if a bleeb-like rounded
head is spotted, then the creature is certainly a
bleeb. In this formulation, then, counting rules
could operate over any type of feature represen-
tation, regardless of its level of abstraction.

Experiment overview

We based our experimental strategy around this
posited relation between counting rules and infor-
mational features, and feature lists and instantiated
features. Like Brooks and Hannah (2006), we
trained participants to categorize members of two
imaginary animals (bleebs and ramuses) character-
ized by category-specific feature forms.
Participants then engaged in a transfer task, cate-
gorizing items that were either entirely perceptually
novel (all-novel items), or contained a single feature
form encountered in training exemplars (interfer-
ing- or facilitating-familiarity items). Unlike
Hannah and Brooks (2009), we gave participants

rules to use. One group of participants was given
a feature-list rule immediately after training and
before test (list-after group); two other groups
were given a counting rule, with one group receiv-
ing it before training (count-before group), and one
immediately after training (count-after group). We
tried to ensure use of the assigned rule by requiring
perfect recitation of it prior to testing and con-
firmed use via debriefing after testing. The exact
wording of the rules for the bleeb category is
given in the Method section, and the debriefing
questions are provided in Appendix A.

Hypotheses
Behaviourally, we can expect that both counting-
rule groups should be slower but more accurate
than the list-after group. The two counting-rule
groups have a perfect rule, but the list-after group
does not, which should yield higher accuracy for
the two counting-rule groups. The counting rule,
however, requires that at least two features be
inspected, and also counted, while the list-after
group is free to check a single feature if they wish,
and no counting is required, which should yield
slower responses for the two counting-rule groups.

Based on the relations between rule types and
feature types described above, we expected that
the list-after group should be reliant on instantiated
features when categorizing the transfer items. The
count-before group should be reliant on informa-
tional features, as their rule provided them with
set of generic feature descriptions to guide their
learning. If informational and instantiated features
are qualitatively different, then when we manip-
ulate the familiarity of transfer items’ features, we
should see these two groups show qualitatively
different ERP responses to the manipulation.
With sufficient power, we should see the list-after
participants show differential ERP responses to
transfer items with familiar and unfamiliar feature
forms, while count-before participants show no
such differential responding; at a minimum the
list-after group should show evidence of greater
processing as they engage more detailed feature
representations (instantiated features).

The contrast between the count-before and
count-after group is also interesting given that
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they share the same decision rule. If the relationship
between counting rules and informational features
is one of necessity, as implied by the traditional
rule description (e.g., Sloman, 1996), then both
groups should be reliant on informational features
and look identical on both behavioural and ERP
measures. In contrast, if count-after participants
are applying their rule to instantiated features
acquired in training, then count-after participants
should look more like list-after participants on
ERP measures. Of course, this expectation also
presumes that instantiated and informational fea-
tures are qualitatively different, and therefore the
contrast between count-before and count-after
groups is also a test of that more general hypothesis.

We did not include a list-before group for two
reasons, even though this would allow us to inves-
tigate the relation between instantiated features and
weak rules. First, while this an interesting topic, it is
secondary to the issues of the relations between
informational and instantiated features and the
nature of the inputs a strong rule can act on.
Second, it is difficult to give people an explicit
instruction on features prior to training and
prevent a strong rule from being discovered and
used (Hannah & Brooks, 2009). Thus a majority
of participants given a feature-list rule prior to
start of training would be likely to discover a
strong rule by the end of training and may then
continue to use it on at least some transfer trials.

ERP-motivated modifications
We modified Brooks and Hannah’s (2006,
Experiment 1) transfer task to make it amenable
to ERP. Brooks and Hannah trained participants
to classify artificial categories very similar to those
used in our task. Unlike Brooks and Hannah, we
manipulated the familiarity of transfer item
feature forms within subjects. ERPs require a
large number of observations to produce reliable
ERP averages; therefore, we also created many ver-
sions of each transfer item. To increase the range of
responding and the chance of finding effects, we
also included a condition in which the single fam-
iliar feature was consistent with the correct categor-
ization, whereas Brooks and Hannah used only
interfering-familiarity and all-novel conditions.

Thus, people saw 12 perceptually different versions
of what at an informational level was the same
transfer item.

EXPERIMENTAL STUDY

Method

Participants
We wanted to ensure that participants were trained
on the material and used the rule assigned to them;
this is a standard concern on concept learning
experiments, made more urgent by the low
signal-to-noise ratio inherent in ERP data. We
therefore established more stringent inclusion con-
ditions than are in place for most such experiments.
Importantly, these requirements were established at
the start of the experiment. Rejections were based
purely on the following behavioural grounds, and
prior to inspecting the ERP data.

We followed convention in requiring that par-
ticipants meet a learning criterion (e.g., Markman
& Maddox, 2003; Sweller & Hayes, 2010). We
used Brooks and Hannah’s (2006) criterion of
over 80% accuracy on the final round of training;
this level reflects a level of performance greater
than can be achieved by reliance on a single
feature. We also required that participants’ transfer
accuracy on the all-novel transfer items for both
categories be above chance. To further ensure that
all participants analysed had understood their
rules and learned the categories, we analysed accu-
racy for outliers, dropping participants whose accu-
racy was more than three standard deviations below
their group means across all three test-item con-
ditions. We used a recursive outlier detection pro-
cedure applied to the accuracy measures to
identify outliers, selecting candidate outliers using
an initial liberal criterion of two standard deviations
below the group mean across all three test-item
conditions. We recalculated the means and stan-
dard deviations after removing candidate outliers,
which were then tested against the revised means
using a conservative three-standard-deviation rule
and the revised means and standard deviations. A
recursive procedure guards against using thresholds
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that have themselves been contaminated by out-
liers.1 Finally, we debriefed all participants to
ensure that they followed the rule assigned to
them, dropping those who did not (debriefing pro-
tocol in Appendix A).

Sixty-three McMaster undergraduate students
initially participated in exchange for credit in
first- or second-year psychology courses. We
dropped two participants in the list-after group
for failing to reach learning criterion. Six partici-
pants were dropped in the count-after group, two
for failing to use their counting rule at test, and
four for being outliers on accuracy. We dropped
seven participants from the count-before group,
one for failing to reach training criterion, and six
for being outliers on accuracy. No participants
failed the test criterion. This left a total of 48 par-
ticipants, with 16 participants randomly assigned
to list-after, count-after, and count-before groups.
The rather high level of outliers may reflect a com-
bination of the difficulty of using the counting rule
under speeded conditions combined with the dis-
traction of an ERP set up. Unlike participants in
standard categorization-learning experiments, our
participants wore an electrode cap with 128 gel-
filled electrodes, plus four additional face electro-
des; a chin bar restricted motion, and participants
were asked to control blinking. It is not unexpected
to observe greater distraction and lower perform-
ance than normal, especially when coupled with a
fairly challenging learning task.

Stimuli, apparatus, and procedure
The experiment was conducted on a 2.4-GHz
Pentium 4 computer, running the Windows 2000
operating system. Stimuli were displayed on a
Samsung SyncMaster 17′′ colour monitor, with a
refresh rate of 75 Hz and a screen resolution of
1024× 768 pixels. The screen was set 80 cm
from the participant; a chin rest fixed viewing dis-
tance. Stimulus presentation, timing, and response
collection was controlled by Presentation software
(http://nbs.neuro-bs.com/).

Training and transfer stimuli. We used training
materials typical of those used in Brooks and
Hannah’s previous experiments (Brooks &
Hannah, 2006; Hannah & Brooks, 2006, 2009),
and they consisted of line drawings of imaginary
animals composed of two species defined by four
dimensions taking on binary informational fea-
tures. Each training category consisted of five
exemplars: a prototype with all four features
typical of the category (shown at the top row in
Figure 2), and four nonprototype items that differ
from the prototype by a single feature.

Our training materials had a family-resemblance
organization in terms of their generic features, as
illustrated in Table 1. By “family resemblance”,
we mean that the categories lacked any single
feature that is common to all members of a cat-
egory, or that are exclusive to a single category
(Rosch & Mervis, 1975). As Table 1 shows, for
example, most bleebs had at least three of
rounded head, rounded torso, striped coat, and
two legs. However, all but one bleeb—the category
prototype, shown in the top row of Table 1—took
on the typical value for ramuses on one feature such
that ramus features overlapped with bleebs. For
example, one bleeb has four legs, another has an
angular head, and so on. Bleeb features similarly
show up among ramuses: One ramus has two
legs, another has a rounded head, and so on.
These overlapping features we call “lure features”.
In contrast, features that are typical of the member-
ship category we call “characteristic features”.

Note that all training feature forms were cat-
egory specific such that lure features only existed
as generic features. For example, the bleeb in the
second row of Figure 2 has an angular head,
which is a lure feature because angular head is
typical of ramuses. The particular form of its
angular head, however, looks nothing like the
angular heads that appear among ramuses, which
are identical with one another.

Transfer items consisted of three types of new
stimuli distinguished by the perceptual familiarity

1As Van Selst and Jolicoeur (1994) showed, a recursive threshold applied to reaction time data (or any ex-Gaussian distributed data)

yields worse performance than simple threshold procedures. However, we are only applying a recursive method on proportion correct,

which does not follow an ex-Gaussian distribution.
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of their characteristic and lure features (bottom
row, Figure 3). The all-novel transfer items con-
sisted solely of perceptually novel versions of the
generic features of the nonprototype training
items. The all-novel item in Figure 3, for

example, is a novel manifestation of the bleeb train-
ing item shown in the row above it, and both cor-
respond to Item 2 in Table 1. For the facilitating-
familiarity items, one of the characteristic features
took on the category-specific form encountered in

Figure 2. Training materials. Bleebs are shown in the left column and ramuses in the right. Category prototypes are shown in the first row.

Nonprototype items (one-away items) deviated from their prototypes by taking on the characteristic generic value of the rival category along one

dimension (row 2: angular/round head; row 3: two/four legs; row 4: spotted/striped pattern; row 5: angular/round torso).
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training; the facilitating-familiarity item in Figure
3, for example, is a bleeb with the typical bleeb
torso seen in training bleebs. For the interfering-
familiarity items, the lure feature took on the

category-specific feature form encountered in the
rival training category; the interfering-familiarity
item in Figure 3, for example, has the typical
ramus head seen in training, even though the
item is a bleeb.

We created 12 versions of the eight nonproto-
type training items for each of the three transfer-
item conditions. For each of the transfer items
shown in Figure 3, for example, there were
another 11 variants, each sharing the same
generic features. This yielded a total of 3 (trans-
fer-item conditions)× 8 (one-away items)× 12
(transfer versions), or 288, transfer items.

Electrophysiology. The ActiveTwo Biosemi elec-
trode system was used to record continuous elec-
troencephalographic (EEG) activity from 128
silver/silver chloride (Ag/AgCl) scalp electrodes,
a common mode sense (CMS) active electrode,
and a driven right leg (DRL) passive electrode
(www.biosemi.com/faq/cms&drl.htm). Four
additional electrodes were placed at the outer

Table 1. Informational structure of the training set

Features

Category Items Head Torso Pattern Leg no.

Bleeb 1 (prototype) 1 1 1 1

2 0 1 1 1

3 1 0 1 1

4 1 1 0 1

5 1 1 1 0

Ramus 6 (prototype) 0 0 0 0

7 1 0 0 0

8 0 1 0 0

9 0 0 1 0

10 0 0 0 1

Note: Head: 1 = rounded, 0 = angular; torso: 1 = rounded, 0 =

angular; pattern: 1 = stripes, 0 = dots; number of legs: 1 =

two legs; 0 = four legs.

Figure 3. Top row: bleeb (left) and ramus (right) prototypes. Middle row: nonprototype bleeb training item. Bottom row: Transfer equivalents

of the nonprototype bleeb training item.
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canthi and just below each eye for recording of
horizontal and vertical eye movements. The con-
tinuous signal was acquired with an open pass-
band from DC to 150 Hz and digitized at 512
Hz. The signal was bandpass filtered offline at
0.3 to 30 Hz and re-referenced to averaged
mastoid reference electrodes. Offline processing
of the EEG signal was carried out with
EEProbe software (ANT; www.ant-neuro.com),
which was used for artefact rejection, segmenting,
averaging, and eye-blink correction. A 100-ms
prestimulus baseline was used for ERP averaging;
only correct trials were included in the averages.

Procedure
Participants were told to categorize items by press-
ing an up-arrow or a down-arrow key; half of the
participants used the up-arrow key to make a
“bleeb” response, and the other half used the up-
arrow key to make a “ramus” response.
Participants used their preferred hand and fingers.
Participants were instructed to respond as quickly
as possible while maintaining accuracy through
both training and transfer phases. Trials for both
training and transfer phases began with the appear-
ance of a fixation cross, which remained on screen
until the participant hit the space bar. Items
appeared centred on screen upon the participant
hitting the space bar and remained until the partici-
pant made a response; participants were required to
refrain from blinking during stimulus display. A
schematic of the experimental procedure is given
in Figure 4.

In the training phase, participants were pre-
sented with 100 training trials in three rounds, fol-
lowing the supported induction procedures used in
Brooks and Hannah (2006). The three rounds con-
sisted of labelled pairs (Round 1; 10 trials),
unlabelled pairs (Round 2; 10 trials), and unlabelled
single items (Round 3; 80 trials). Each item was
presented twice in each of the two paired-item
rounds. The first pairing involved items matched
on lure features (e.g., rounded head ramus and
angular head bleeb); the second pairing was ran-
domly determined. Each item was presented eight
times in the single-item round. We randomly
ordered items in the single-item round, subject to

the constraint that the first two items presented
be the prototypes.

For both rounds of paired items, a prompt
appeared at the top centre of the screen to indicate
whether the participant was to identify the left or
right pair member. For the labelled pairs in the
first round, the prompt appeared five seconds
after stimulus display to give participants time to
study both items. In the second round, the
prompt appeared simultaneous with the pair of
items. Incorrect responses were signalled by a
low-frequency tone, and correct responses by a
high-frequency tone.

Members of the count-before group began
training by rehearsing counting-based categoriz-
ation rules based on the structure of the categories
described in Table 1 (e.g., “An item is a bleeb if it
has at least two of the following four features: four
legs, rounded heads, stripes, and rounded torsos”).
Members of the count-after group practised the
same rule immediately after training. Members
of the list-after group recited a list of four charac-
teristic features for each category (e.g., “Bleebs
usually have four legs, rounded heads, stripes,
and rounded torsos”) at the end of training. All
participants rehearsed their rules until they could
recite them perfectly. Thus, at a minimum, all
participants began the transfer test knowing the
relevant features for each category.

Transfer and posttransfer. All participants were told
that they would see new variants of the training
items and that no feedback would be given. The
experimenter instructed all participants to use
their assigned rule to identify transfer items and
to respond as quickly and as accurately as possible.
We randomly ordered transfer trials at the start of
each participant’s session. After completion of the
test phase, participants were debriefed and were
queried as to how they made their decision.

Results

We analysed mean accuracy and mean RT for
correct responses in separate 3 (rule group: list-
after, count-after, count-before)× 3 (transfer
item: all novel, facilitating familiarity, interfering
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familiarity)× 2 (species: bleeb, ramus) mixed-
design analyses of variance (ANOVAs). For both
analyses, rule group was a between-subjects factor,
and transfer item and species were within-subject
factors. A larger analysis with response mapping
as a between-subjects factor found no effect of
response mapping for accuracy or reaction time
(RT). Although the effect of species did not
provide any meaningful results, results involving

this factor are reported for completeness in
Appendix B.

Accuracy
As the top panel of Figure 5 shows, the list-after
group’s accuracy falls below that of the two count-
ing rule groups, which are similar to each other. For
the list-after group, accuracy is highest for facilitat-
ing-familiarity items, and lowest for interfering-

Figure 4. Experiment schematic. Dotted arrows point to the transfer items illustrated in Figure 3. Participants categorized training and

transfer items by pressing the up- and down-arrow keys.
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familiarity items, with all-novel items falling inter-
mediate. For the two counting-rule groups,
however, accuracy appears flat across transfer
items. The ANOVA largely confirms these
impressions, with rule group, F(2, 45) = 70.99,
MSE = .046, p, .001, h2

p = .76, transfer item, F
(2, 90) = 38.90, MSE = .003, p, .001, h2

p = .46,
and their interaction, F(4, 90) = 19.53, MSE
= .003, p, .001, h2

p = .46, achieving reliability.
To clarify the Rule Group×Transfer Item

interaction, we analysed the accuracy data by con-
ducting simple-effect analyses split on rule group.
Given the post hoc nature of these analyses, we
applied a Bonferroni correction to α by dividing
.05 by the six possible post hoc parsings of the
interaction’s main effects (three transfer item par-
sings and three rule group parsings), αadjusted
= .0083. Only the list-after group showed a reliable
main effect of transfer item, F(2, 30) = 74.88,MSE
= .003, p, .001, h2

p = .68. No other effects were
reliable. A familiar feature appears to influence
list-after participants’ decisions, but not those of
the counting rule participants.

It should be noted that although list-after
group’s accuracy (59.4%, SE = 3.4%) on the all-
novel was lower than that on the all-novel items
in Brooks and Hannah’s (2006) experiment, per-
formance was above chance, with a 95% confidence
interval2 ranging from .522–.666. Further, all par-
ticipants scored above 50% correct in classifying
all-novel items for both categories; thus, not only
did the list-after group as a whole perform above
chance on the all-novel items, so did each partici-
pant within the group. List-after participants are
able to reliably classify items in the absence of any
specific similarity to guide their performance.
Their knowledge is not simply restricted to a
small number of instantiated features, but must
also include some informational feature represen-
tations as well.

Reaction times
As illustrated in the bottom panel of Figure 5, list-
after participants correctly categorized stimuli more
quickly (M = 1297 ms, SE = 120) than both count-

before (M = 3116 ms, SE = 256) and count-after
participants (M = 2998 ms, SE = 297). This main
effect of rule group proved reliable: F(2, 45) =
20.46, MSE = 4,862,343, p, .001, h2

p = .48. The
main effect of transfer item was also reliable, F(2,
90) = 5.97, MSE = 75,108, p = .004, h2

p = .12,
driven by a small advantage for facilitating-famili-
arity items over all-novel items, Bonferroni-cor-
rected paired t-test (αadjusted = .017), t(47) = 3.86,
SE = 35.2, p, .001, Hedges’s g = 0.56.

Overall, the behavioural evidence is suggestive of
instantiated and informational features engaging

Figure 5. Top: Mean proportion correct categorizations across

transfer items by rule group. Bottom: Mean correct reaction times

(RTs) across transfer items by rule group. “F. Fam” = facilitating

familiarity; “I. Fam” = interfering familiarity. Error bars = 1

standard error.

2Interval based on a critical t(15) = 2.13.
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processing in qualitatively different ways. The
feature familiarity influenced the speed by which
all participants made their decision. In contrast,
the accuracy results tell us that the familiarity of fea-
tures influenced the decision making of only the
list-after participants. Thus, all participants may
have had their search for information speeded or
slowed by the presence of familiar features, but
only list-after participants seemed to have had
their decision making influenced by the familiarity
of features. The use of a counting rule therefore
seems to entail reliance on informational features,
regardless of whether it is learned before or after
perceptual experience of the categories. That is,
counting rules seem necessarily to operate over
abstract inputs. The ERP evidence, however, chal-
lenges this conclusion.

ERP activity
Given the exploratory nature of this research, we
needed an objective means of selecting electrodes
for analysis. Fortunately, just such an objective
selection method is available via PLS (Lobaugh,
West, & McIntosh, 2001; McIntosh et al.,
1996), which does not require any a priori bias
with respect to time-course or location of effects.
PLS is similar to principle components analysis
(PCA) in that it uses singular value decomposition
to extract information from the dataset, but differ-
ent in that it constrains analysis to the variance that
can be explained by the experimental conditions.
Singular value decomposition yields a set of latent
variables (LVs; similar to eigenvalues in PCA)
that represent particular contrasts, which account
for a percentage of the cross-block covariance
explained by the experimental conditions. Each
singular value explains how much of the covariance
was explained by a particular latent variable. One
thousand permutations were computed and pro-
vided an estimate of obtaining a singular value by
chance (similar to a p-value). The electrode sal-
iences represent the relation between the exper-
imental design contrasts (as represented by the
LV) and the spatiotemporal pattern of ERP ampli-
tude changes. Two hundred bootstrap re-samplings
were performed to assess the reliability of electrode
saliences at each time point by providing a standard

error for each salience. The bootstrap procedure
uses random sampling with replacement so that
even though each sample will have the same
number of elements as the original data, slightly
different samples will be produced, and reliability
of the saliences can be measured. The ratio of the
salience to the standard error is approximately
equal to a z-score, and so data points where the
ratio was more than 1.7 (p, .05) were considered
reliable.

Responses for the list-after participants were
substantially faster than those for both count-after
and count-before participants, therefore ERP ana-
lyses examined early and late windows. Two PLS
analyses were performed, one including all rule
groups over a 0–1000-ms time window and one
including only the two counting groups over a 0–
3000-ms window. Both analyses identified the
same four regions of interest: frontal central sites
(electrode FCz), central parietal sites (Pz), and
two bilateral parietal sites, one on the left (CP3)
and one on the right (CP4); these sites are shown
in Figure 6. The early PLS analysis yielded one
reliable LV discriminating groups and conditions,
which accounted for 33% of the variance
(p, .05). The late PLS analysis also yielded one
reliable LV, which accounted for 66% of variance
across groups, (p, .003).

Smaller epochs were created within each of the
early and late PLS analyses. Epochs were chosen
based on correspondence with the PLS and visual
inspection. For the early time window, the first
four epochs were 100 ms each (0–100, 100–200,
200–300, 300–400 ms), with two final epochs of
300 ms (400–700, 700–1000 ms). The late time
window was divided into four epochs of 500 ms
each (1000–1500, 1500–2000, 2000–2500, 2500–
3000 ms). For each of these epochs we analysed
amplitudes using 3 (group: list-after, count-
before, count-after)× 3 (transfer item: facilitating
familiarity, all novel, interfering familiarity)× 4
(location: FCz, CP3, CP4, Pz) repeated measures
ANOVAs. As no meaningful effects of species
(bleeb/ramus) emerged from the behavioural data,
this factor was dropped for the amplitude analyses.
Reliable effects were interpreted with post hoc
Bonferroni-corrected t-tests.
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Early analyses (0–1000 ms). Four of the six epochs
yielded reliable effects, beginning as early as the
0–100-ms epoch; ANOVA results are summarized
in Table 2. This is also the only epoch in the early
window to reveal a main effect of transfer item.

Bonferroni-corrected t-tests (αadjusted = .017)
reveal that all-novel items produced a larger ampli-
tude than facilitating-familiarity items, t(44) =
3.49, SE = 0.154, p = .0024, Hedges’s g = 0.50. All
rule groups seem to be responding to feature

Figure 6. Scalp locations of the four regions of interest (ROIs) identified by the late (0–3000-ms) partial least-square (PLS) analyses. The early

PLS analysis produced similar regions of interest. The ROIs are centred on electrodes FCz, Pz, CP3, and CP4 (circled).

Table 2. Summary of ANOVA results for ERP amplitudes, early window

Epoch (ms) Result

0–100 Transfer item: F(2, 90) = 4.11, MSE = 3.84, p = .02, η2 = .084
Group× Location: F(6, 135) = 2.68, MSE = 3.14, p = .02, η2 = .106

100–200 Group× Location: F(6, 135) = 2.32, MSE = 5.78, p = .04, η2 = .093
400–700 Group× Location: F(6, 135) = 2.53, MSE = 12.51, p = .02, η2 = .101
700–1000 Group× Location: F(6, 135) = 3.63, MSE = 14.81, p = .002, η2 = .139

Note: ANOVA = analysis of variance; ERP = event-related potential.
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familiarity, as there was no Group×Transfer Item
interaction.

The only other effect found across early epochs
was an interaction of Group×Location. The
waveforms in Figure 7 show the count-before
group with a larger amplitude than either the
count-after or list-after groups at site FCz;
however, neither of the Bonferroni-corrected t-
tests proves reliable. For the 100–200-ms epoch,
the count-before group appears to have a larger
amplitude than the list-after group at CP3, but

the difference falls short of reliability after
Bonferroni correction.

Inspection of the waveforms in Figure 7 also
reveals striking differences between groups at the
Pz site, beginning at 400 ms. Although none of
the Bonferroni-corrected t-tests yields a reliable
result (αadjusted = .00075),

3 the Group×Location
interaction tells us that the groups differ at at
least one location, and the largest group differences
in this time period are between the count-before
group and the other two at the Pz site (count-

Figure 7. Waveforms appearing at electrodes FCz, Pz, CP3, and CP4 during the 0–1000-ms time window. Amplitude differences were

analysed at six epochs: 0–100 ms, 100–200 ms, 200–300 ms, 300–400 ms, 400–700 ms, and 700–1000 ms.
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before vs. count-after, Hedges’s g = 0.59; count-
before, vs. list-after, Hedges’s g = 0.47; count-after
vs. list-after, Hedges’s g = 0.13). The activity at
the CP4 site is similar in pattern, although the
effects are smaller (count-before vs. count-after,
Hedges’s g = 0.32; count-before, vs. list-after,
Hedges’s g = 0.45; count-after vs. list-after,
Hedges’s g = 0.03). In contrast, the largest effect
at the other two sites is the count-before versus
list-after contrast at the CP3 site, and this is mod-
erate at best, Hedges’s g = 0.23. Thus, the reliable
interaction seems to be driven by activity at the
Pz and maybe CP4 regions, where the contrast
seems to be between the count-before group and
the two “after” groups, rather than between the
counting-rule and feature-list group.

By 700 ms, however, the list-after group ampli-
tudes drop down to those of the count-before
group, as if some processing had been completed.
In this final window, the count-after group pro-
duced greater amplitudes than either the count-
before group, t(30) = 3.95, SE = 1.26, p = .0004,
Hedges’s g = 0.70, or the list-after group, t(30) =
3.95, SE = 1.26, p = .0004, Hedges’s g = 0.70.

The early activity suggests that all groups
initially register the differences in feature familiarity
very early on, perhaps reflecting an advantage for
processing or attending to familiar perceptual
forms as indexed by the lower amplitudes for
both facilitating- and interfering-familiarity trans-
fer items. However, as processing progresses, the
groups begin to pull apart. The list-after and
count-after groups initially look more different
from the count-before group, possibly because
they are processing instantiated features and thus
are interpreting/identifying richer feature represen-
tations, which takes more processing effort and
yields a more positive amplitude. This process
appears to end earlier for the list-after group, poss-
ibly because the search ends after identifying only
one or two features; from about 700 ms the list-
after group amplitudes drop down to those of the
count-before group. In contrast, the amplitudes of

the count-after group continue to climb as they
seek out two or three features, according to the
new rule they have been given. At a minimum,
these results suggest that the two counting-rule
groups show qualitatively different forms of ERP
activity at the midline parietal site, despite a
common rule and nearly identical behavioural
responses. The differences between counting-rule
groups grow more robust during the late window.

Late analyses (1000–3000 ms). During the first
epoch (1000–1500 ms), only the Group×
Location interaction is reliable. From 1500 ms
on, all epochs yield the same two reliable effects,
consisting of a Group×Test Item interaction
and a Group× Location interaction. ERP
responses are rarely examined at such late
windows, and some caution in interpreting them
is necessary; however, the results across the late
epochs are quite consistent. ANOVA results for
all late epochs are summarized in Table 3.

In all epochs, the Group× Location interaction
involved a trend in which the count-after group had
a more positive amplitude than the count-before
group at CP4 and Pz sites. However, the
Bonferroni-corrected α = .00075, and, thus, none
of our paired t-tests achieve significance, although
three comparisons at the Pz electrode approach sig-
nificance (p, .0015): 1500–2000 ms, t(30) = 3.51,
SE = 2.245, p = .0014, Hedges’s g = 0.62; 2000–
2500 ms, t(30) = 3.52, SE = 2.783, p = .0014,
Hedges’s g = 0.62; 2500–3000 ms, t(30) = 3.59,
SE = 3.305, p = .0012, Hedges’s g = 0.63.

For all Group×Test Item interactions, the
interactions resulted from the all-novel transfer
items producing higher amplitudes than the inter-
fering-familiarity transfer items, but only for the
count-after group (αadjusted = .00139

4). For the
1500–2000-ms epoch: all-novel count-after.
interfering-familiarity count-after, t(15) = 3.94,
SE = 1.04, p = .00130, Hedges’s g = 0.70. For the
2500–3000-ms epoch: all-novel count-after.
interfering-familiarity count-after, t(15) = 4.38,

3However, with the interaction involving 12 (4× 3) means, and thus (12× 11)/2 = 66 possible post hoc comparisons, the

Bonferroni correction becomes very conservative.
4αadjusted = .05/36, given 36 possible comparisons based on nine (3× 3) means.

THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2016, 69 (11) 2181

FEATURES ACROSS LEVELS OF ABSTRACTION



SE = 1.25, p = .0005, Hedges’s g = 0.77. Although
the trend is for the all-novel count-after. interfer-
ing-familiarity count-after during the 2000–2500-
ms epoch, this only approaches significance
(p, .0028), t(15) = 3.75, SE = 1.228, p = .0019,
Hedges’s g = 0.66.

As the waveforms shown in Figure 8 suggest,
striking differences between the two counting
groups emerge from 1000 ms onwards, with the
count-after group maintaining the enhanced posi-
tivity relative to the count-before group demon-
strated earlier at the Pz site. Perhaps most
relevant for the issue of feature representation,
however, is the finding that only the count-after
group showed a sensitivity to the familiarity of
the transfer items’ feature forms.

Summary of results
Overall, the activity of the list-after and count-after
groups suggests that they were reliant on features
that require more processing than those relied on
by the count-before group, consistent with the
proposition that the count-after and list-after
groups relied on instantiated features to make
classification decisions while the count-before
group relied on informational features. This
interpretation would also imply that informational
and instantiated features are qualitatively distinct.
Further, the late sensitivity to feature familiarity
that emerges for the count-after group suggests
that the perceptual details influence processing
even during the late decision-making stage. This
is consistent with the proposition that the count-

after participants were applying their rule to instan-
tiated, rather than informational, features.

Discussion

We set out with this study to try to refine our
understanding of instantiated and informational
features, and the relations between feature abstrac-
tion and rules. We wanted to know whether, as
implied by earlier treatments (e.g., Brooks &
Hannah, 2006; Hannah & Brooks, 2006, 2009),
informational and instantiated features were quali-
tatively different from one another, with each type
of feature representation conveying unique infor-
mation. We wanted to know whether strong rules
such as counting rules necessarily require (abstract)
informational features as inputs, or whether they
can operate across instantiated features. How
much of categorization behaviour reflects the
nature of the rules used, and how much reflects
the constraints of the representations the rules act
on?

The behavioural evidence suggested that the
count-before and count-after groups are engaged
in similar processing, which is distinct from that
of the list-after group. The two counting-rule
groups do not look the same in the ERP data,
however. Instead, from 400 ms onwards, the
count-after group looks more like the list-after
group than the count-before group; from 700 ms
onwards, the count-after group is still different
from the count-before group, while the list-after
group resembles the count-before group. Over the

Table 3. Summary of ANOVA results for ERP amplitudes, later window

Epoch (ms) Result

1000–1500 Group× Location: F(3, 90) = 5.71, MSE = 31.79, p = .001, η2 = .160
1500–2000 Group× Item: F(2, 60) = 4.84, MSE = 26.67, p = .011, η2 = .139

Group× Location: F(3, 90) = 7.02, MSE = 53.76, p, .001, η2 = .190
2000–2500 Group× Item: F(2, 60) = 3.97, MSE = 32.71, p = .025, η2 = .117

Group× Location: F(3, 90) = 7.76, MSE = 80.93, p, .001, η2 = .205

2500–3000 Group× Item: F(2, 60) = 5.43, MSE = 36.52, p = .007, η2 = .153
Group× Location: F(3, 90) = 8.22, MSE = 114.51, p, .001, η2 = .215

Note: ANOVA = analysis of variance; ERP = event-related potential.
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later epochs, only the ERPs of the count-after
group show differences between familiar and
novel feature forms.

Despite their similar behavioural profile and the
use of an identical rule, the two counting-rule
groups yielded distinct neural signatures, particu-
larly at intermediate and later time points most
strongly correlated with likely decision processes.
The ERP patterns suggest the following. First,
the two counting-rule groups are relying on differ-
ent sources of feature information. The count-after
group—which shows prolonged elevated positivity
—appears to rely on processing that is more

demanding. This would be consistent with the
count-after group relying on feature representations
that were more detailed, and carrying more infor-
mation, than the count-before group. That is, the
count-after participants are applying their rule
over instantiated features while the count-before
participants apply the same rule to informational
features. This conclusion is strengthened
when we consider the initial similarity between
the list-after and count-after profiles. Second, the
distinctness of the ERP profiles of the count-
before and two rule-after groups implies that
instantiated and informational features are

Figure 8. Waveforms appearing at electrodes FCz, Pz, CP3, and CP4 during the 0–3000-ms time window. Amplitude differences were

analysed at four epochs: 1000–1500 ms, 1500–2000 ms, 2000–2500 ms, and 2500–3000 ms. Only the two counting-rule groups were

analysed in this window.
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qualitatively different from one another:
Informational features are not sparse instantiated
features, but convey information not captured by
instantiated counterparts.

All groups show very early sensitivity to the fam-
iliarity of the specific feature forms of the transfer
items. This is consistent with instantiated features
influencing attention or visual search before any
decision process begins, as Hannah and Brooks
(2009) proposed. Thus, even strong rule users
applying their rule to informational features may
have their implementation of this rule influenced
by instantiated features. Familiar-looking features
may get evaluated first, and this may, under
normal conditions, make rule use more efficient.

Feature representation
Although the exploratory nature of this work pre-
cluded precise hypothesizing about the nature of
the waveform differences that we could expect,
the waveform differences seen at the Pz/CP4 sites
(midline parietal and right-hemisphere sites) are
consistent with the idea that count-before partici-
pants relied on informational features while
count-after and list-after participants incorporated
instantiated features into their decision making.
We offer the following observations and interpret-
ations as a preliminary account of the ERP activity.

At the Pz/CP4 clusters, the count- and list-after
groups seemed to separate from the count-before
group, as supported by the Group× Location
interactions. The separation was especially apparent
at the Pz sites, particularly during 400–700 ms after
stimulus presentation. During this window, ERP
activity began to return to baseline for the count-
before group, while amplitudes steadily increased
for both count-after and list-after groups. This
pattern of rising activity for the rule-after groups
and falling activity for the count-before group is
consistent with the idea that the midline activity
reflects the effort of processing the feature rep-
resentations—the more complex the feature, the
greater the response. If this interpretation is
correct, then the rule-after groups seem to be pro-
cessing feature representations that require more
effort than those processed by members of the
count-before group. The Pz activity is thus

consistent with the count-before participant pro-
cessing abstract informational features, while
members of the other two rule groups are proces-
sing detailed instantiated features.

An alternative interpretation is possible. At the
start of transfer, both rule-after groups have had
80 fewer trials to practise their rule than did the
count-before group. The count-before group,
therefore, may have simply been more practised at
retrieving and using their rule than either rule-
after group. Repetition of stimuli has long been
known to attenuate neural responses (see Grill-
Spector, Henson, & Martin, 2006, for a concise
review). Practice of a task, such as discriminating
two sounds (e.g., Reinke, He, Wang, & Alain,
2003), also attenuates ERPs. As the list-after
group presumably makes their decision after pro-
cessing only one or two features, they maintain
their rule for a shorter time, producing an earlier
return to baseline than the count-after group.

This explanation cannot be ruled out, but is less
plausible than the representational argument given
above. Neural responses to practice or repetition are
usually correlated with performance changes. Thus,
if the count-before group were simply more effi-
cient at rule use than count-after participants,
then we would expect them to be faster than the
count-after participants in making a decision.
However, this was not the case.

Fortunately, both the postulate that instantiated
and informational features are qualitatively differ-
ent and the postulate that strong rules can accept
instantiated inputs are supported by other data,
particularly the striking late differences between
counting groups over the right central parietal
area. Over the 1500–3000-ms window, the
count-after group’s ERPs were sensitive to feature
familiarity, but the count-before group did not
show this sensitivity. There are intriguing com-
monalities in the late waveforms as well, with
both groups showing a slow rising increase in posi-
tivity over the right central parietal area. Such com-
monalities could be indexing the same decision
process—that is, the use of the same counting
rule. The patterns seem readily understandable if
they reflect that the count-before participants
were applying their rule to informational features,
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while the count-after participants applied the same
rule to instantiated features.

Any explanation of the differences between the
count-after and count-before groups is necessarily
speculative. What is not speculative, however, is
that both counting-rule groups (a) used the same
rule, (b) trained on the same stimuli, and (c)
showed the same behavioural pattern. Given these
constraints, we suggest that the differences
between the groups’ waveforms are most plausibly
consistent with the two groups relying on different
types of feature representations.

Informational and instantiated features
Informational features not simply seem to be less
detailed, or fuzzier, representations of some specific
feature form, but contain information that is not
found in any specific feature. How then do infor-
mational features form out of instantiated features?
To what extent is such feature construction a delib-
erate process? That informational features contain
generic information distinct from that conveyed
by instantiated features suggests that they emerge
from some sort of comparison process. This in
turn implies some sort of deliberative processing,
even if such abstraction is incidental to some focal
task (e.g., Whittlesea & Dorken, 1993). If so,
such a deliberative origin would seem to speak
against their emergence as a result of automatic
abstraction processes, such as those claimed in
fuzzy-trace theory (Brainerd & Reyna, 1990a,
1990b, 1996; Reyna & Brainerd, 1995), or implicit
memory accounts (e.g., Knowlton, Ramus, &
Squire, 1992).

Another possibility is that informational features
are Barsalou’s (1999, 2009) simulators, at the level
of features. This would lead to a picture of feature
extraction by the registration of commonalities
across features by conjunction neurons in associ-
ation areas. However, while Barsalou has argued
that such extraction requires attention, it is not
clear whether this requires explicit registrations of
such commonalities.

Gentner and Medina (1998) described rule
abstraction as a process of deliberate comparison
across aligned exemplars. Such an aligned compari-
son could be extended to features, such that we

could think of informational features as feature
rules. Yamauchi (2009) has recently stressed the
importance of labels in guiding such alignment-
based abstraction. The feature labels contained in
the counting rule provided to the count-before par-
ticipants would allow them to generate a generic
representation of “two legs”, “striped coat”, and so
on, from memory, and these initial informational
features then guide the count-before participants’
analysis and encoding of the training features.
Brooks and Hannah (2006) similarly found that
participants given a feature list prior to training
showed much reduced sensitivity to the familiarity
of features, suggesting a greater reliance on infor-
mational features.

Features and tags
One reviewer, however, suggested an alternative
that merits consideration: All feature represen-
tations are instantiated. In this view, people recruit-
ing a collection of feature instances and interpreting
new features based upon similarity to features in the
collection can explain the apparent generalization
of feature knowledge. Such a view implies that fea-
tures are themselves categories (Schyns, Goldstone,
& Thibaut, 1998), and that feature categories
consist exclusively of feature instances. This
instance-theory approach (Brooks, 1978) has
appeal to us, but it cannot explain the ERP data
presented here without introducing a de facto
informational representation.

The reviewer argued that observed differences
between counting groups in our experiment may
arise because count-before participants hierarchi-
cally organize instantiated features acquired in
training around a verbal label, or node or a rep-
resentation that integrates features that share
some property, building up feature categories.
Count-after participants, in contrast, have a
“flatter” organization, with feature instances
directly connected to a category label; the count-
after participants may gradually build up such a
hierarchical organization as a result of applying
the counting rule over the transfer period. The
counting rule for count-before is applied to the
node/label itself. The problem for such an
account is that the node/label representation is,
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on its own, an informational feature: It represents a
collection of feature instances by association with
them, but does not itself carry any specific form
information.

However, although this account does not escape
the informational/instantiated distinction, it has at
its heart an idea that allows an elegant and precise
explanation of their relation. To make this leap,
we also need to invoke Clark’s (2008) notion of
words as tags to experiences or ideas. A feature
name can be used to tag experience, such as the
experience of a particular feature form. Critically,
we suggest that a tag can be used in one of two
ways: It can act as a retrieval cue activating its
associated experience, or it can act as a substitute
for the tagged experience. Used to retrieve feature
instances, it produces instantiated effects; used as
a substitute for feature instances, it produces infor-
mational effects. Such an account gives us a precise
definition of informational and instantiated fea-
tures and also makes it easy to understand how
people can be flexible in the information they
recruit, simply by shifting how the tag is used. It
further suggests how informational features
emerge—not from a representational change, but
from a new way of using the existing represen-
tations, by confining processing to just the tag.

Rules and representations
Our results also suggest that strong rules can
operate over either instantiated or informational
features. That a rule can take highly specific,
detailed representations as inputs seems in conflict
with traditional approaches to rules as abstract pro-
cesses that operate over abstract features (e.g.,
Sloman, 1996). The finding also sits uncomfortably
with a dichotomy splitting cognitive processes into
rule-based versus similarity-based, where the
former is a marker of abstract processes and the
latter a marker of embodied or instantiated
processes.

This rules-versus-similarity dichotomy has
guided much cognitive research, especially in the
domain of categorization, even as it has come
under increasing criticism (e.g., Pothos, 2005).
For example, Folstein and Van Petten (2004) con-
ducted an ERP-based study of concept learning in

which half of the participants were taught a
decision rule, and half were not. The supposition
was that this second group would rely on similarity,
and that this would be a qualitatively different
process from that used by the rules group.
However, both groups showed a similar response
to repeated test features, suggesting a common
response to feature form for both strategy groups,
despite Folstein and Van Patten’s claims that the
ERP work supported such a rules/similarity
distinction.

However, our results also qualify Hannah and
Brooks’ (2009) claim that strong rules are linked
to informational features, and weak rules to instan-
tiated features, neglecting the issue of the necessity
of the linking of the strong rules and informational
features. This work fills in that gap and points to a
merely contingent relation between strong rules
and informational features: Informational features
are more likely to overlap across categories, yielding
items with conflicting information. Thus, encoding
items in terms of their informational features is
more likely to produce a situation where a rule
that resolves such conflict is necessary. The nature
of the relation between weak rules and instantiated
features, however, is not addressed by our present
results.
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APPENDIX A

Debriefing protocol

Debriefing of participants began with an open-ended question:

“How did you decide whether something was a bleeb or

ramus?” If this produced a counting rule as an answer, or

another strong rule, questioning stopped. Otherwise, this was

followed by a more specific question involving one of the

named features to determine whether they were aware that no

single feature was sufficient for categorization. For example, if

a counting participant said, “I used mainly legs and bodies to

make my decisions”, the experimenter would probe with: “If

an animal had two legs [or, rounded torso . . . ], what would

you call it?” If the participant replied with “bleeb”, this would

be indicative of a feature-list rule. If their response indicated

that a single feature was not enough (e.g., “Well. That would

depend on whether the torso was rounded or not”), then this

would be indicative of a counting rule. If their strategy was

still not clear the experimenter probed with a more specific ques-

tion: “Could you ever make a decision just by looking at the legs

alone or body alone?” If the participant answered in the positive

(e.g., “sometimes”) then they were counted as using a list rule. If

they answered in the negative, then they were counted as using a

counting rule.

APPENDIX B

Behavioural analysis of variance (ANOVA)
results involving species

Accuracy
The species factor yielded only two effects in the accuracy data,

both two-way interactions. There was a Transfer Item× Species

interaction, F(2, 90) = 5.59, MSE = .002, p = .005, , h2
p = .11,

that reflected a larger effect of transfer item on bleebs than

ramuses. The Rule Group× Species interaction, F(2, 45) =

4.32,MSE = .040, p = .019, h2
p = .16, is explained by the obser-

vation that both counting groups were more accurate for ramuses

than for bleebs, while the reverse held true of the listing

participants.

Reaction time
Bleebs were correctly identified more quickly than ramuses, F(1,

45) = 17.49, MSE = 313,191, p, .001, h2
p = .28. This species

main effect appeared larger for the two counting groups than

for the listing group, and the Rule Group× Species interaction

was reliable, F(2, 45) = 5.90, MSE = 313,191, p = .005,

h2
p = .19. The species difference also appeared larger for the

all-novel condition than for the interfering- and facilitating-fam-

iliarity conditions, and the Transfer Item× Species interaction

proved reliable, F(2, 90) = 3.66, MSE = 60,554, p = .030,

h2
p = .08.
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