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Portable Electromyography: A Case Study on Ballistic Finger
Movement Recognition
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Abstract—In neuromuscular analysis, electromyography (EMG) is
typically used to analyze aggregate Action Potential (AP) signals to detect
medical abnormalities, activation levels, recruitment order, or analyze
biomechanics. In our previous work, we compared the performance
of these off-the-shelf solutions to research-grade EMG machines and
found that due to their rigid electrode placement, low sampling rate, and
data transmission medium they are ill-suited for research use, in which
data collection must be robust and accurate. We present XTREMIS: a
low-cost and portable EMG platform with a small form factor (55mm
x 35mm) that has a sample rate comparable to research-grade EMG
machines. Indeed, experiments on 8 subjects have shown that not only
does XTREMIS functionally outperform technologies; its signal quality
is high enough to achieve finger movement classification accuracy similar
to research-grade EMG machines, making it a suitable platform for
research.

Index Terms—Electromyography, Wearable Technology, Gesture
Recognition, Gaussian Mixture, Hidden Markov Model

I. INTRODUCTION

Electromyography (EMG) is an electro-diagnostic tool used to
analyze muscle response or electrical activity in response to a
nerve’s stimulation of the muscle. This is done by detecting a small
bioelectric pulse called the Action Potential (AP) that is generated
when muscles contract and relax. By analyzing the AP signal, it
becomes possible to analyze medical abnormalities, activation levels,
muscle recruitment order, or biomechanics [1]. Currently there exist
two types of EMG: intramuscular EMG and surface EMG (sEMG).
Intramuscular EMG requires an electrode to be inserted into the
muscle that is being measured. This is an invasive process and can be
painful to the person being measured, however the signal is typically
clear with a low amount of noise. On the other hand, surface EMG
electrodes are placed on the skin, making it non-invasive and pain-
free. However, the signal is noisy and requires proper filtering before
being processed.

There has been a myriad of research on the use of sEMG to
drive an actuation based on human biosignals in the past couple
of decades. Specifically, sEMG signals are processed and input
into classifiers to create functions ranging from hardware control to
gesture recognition. Indeed, one of the earliest concepts of using
EMG for robotics control was proposed by Farry et al. in 1996, in
which they proposed converting EMG signals into commands for
NASA/Johnson Space Center’s sixteen degree-of-freedom Utah/MIT
Dexterous Hand for two grasping (key and chuck) options and three
thumb motions (abduction, extension, and flexion) [2]. As of late,
EMG research has been more focused on the classification of intricate
tasks. This naturally led researchers to finger movement classification.
In 2013, Chen et al. proposed a pattern recognition system to perform
automatic classification on multiple finger movements, specifically
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Chinese sign language gestures for numbers ranging from 0 to 9
[3]. Moreover, they investigated the effects of different feature and
classifier combinations in offline recognition, and have taken a further
step by implementing a real-time recognition system with above 90%
accuracies for all subjects.

Due to advances in integrated circuit technology and the ease of
use of surface electrodes, developers have begun to integrate sEMG
technology into wearable devices for various applications ranging
from gesture recognition [4] to fitness assessment [5], [6]. In 2017,
we investigated the possibility of recognizing ballistic gestures –
repetitive, spontaneous propulsions of the limbs in activities such
as playing instruments or typing – using two different EMG de-
vices. Specifically, we evaluated the performance of a Myo gesture
recognition armband [4] against a Biosemi ActiveTwo research-grade
EMG machine [7] and found that while the BioSemi ActiveTwo
achieved a high classification accuracy, the Myo armband suffers
from two significant setbacks that prevented it from achieving a high
classification performance [8]:

1) Rigid electrode placement: The electrodes can only be placed
in one specific way on pre-specified muscles fitting the primary
application of the device. For example, Myo’s primary purpose is
gesture recognition, and hence it can only be placed on forearm
muscles near the elbow [4].

2) Limited sampling rate: Due to power constraints, maximum
device sampling rates are typically at approximately 200 Hz.
Significant information in the signal may be lost as this does
not satisfy the Nyquist-Shannon sampling theorem as typical
aggregate muscle motor unit action potential is usually between
10 Hz and 500 Hz [9].

However, the high costs and complexity of research-grade EMG
machines prevent developers and scientists without an electronics
engineering background from utilizing them for their research needs,
instead resorting to off-the-shelf wearable devices like Myo. Thus,
we present XTREMIS: a low-cost, portable, and powerful hardware
and software solution to EMG data collection. XTREMIS is an EMG
data collection device with an adjustable biomedical instrumentation
chip and flexible electrode placement. In order to evaluate the
validity and performance of XTREMIS, two types of experiments
were performed: finger movement recognition and a signal-level
analysis and similarity measure. The performance of XTREMIS is
also compared against the BioSemi ActiveTwo and the Myo armband.
Thus, our contribution in this paper is five-fold:

1) We present XTREMIS: a hardware platform and software solu-
tion for Electrocardiography (EKG), Electromyography (EMG),
and Electroencephalography (EEG) data collection.

2) We propose a Gaussian mixture Hidden Markov model (GM-
HMM) to classify ballistic gestures during a typing task.

3) We present a detailed evaluation of the different factors that
affect finger movement classification during typing, namely:
speed of typing, placement of electrodes on the skin, and
sampling rates.

4) We perform a signal-level analysis on XTREMIS and compare
its performance to a research-grade EMG machine.
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5) We evaluate the performance of both devices in classifying
ballistic gestures using a Gaussian Mixture Hidden Markov
Model (GM-HMM).

The rest of this paper is organized as follows: Section II discusses
gesture recognition and previous works. Section III discusses the
hardware design and software architecture of XTREMIS. Section IV
details the GM-HMM applied in recognizing finger movements in
the classification performance evaluation of XTREMIS. Section V
highlights the evaluation results of the classifier performance using
XTREMIS v.s. a research-grade EMG machine and presents a signal
comparison between the two devices. Finally, Section VII presents
the conclusion and future works, respectively.

II. BACKGROUND AND RELATED WORK

Gesture recognition is a problem that has been tackled using many
approaches by researchers since the 1990s. However, due to the
variety of possible gestures performed by hands, gestures can be
identified in two types:

1) General gestures: gestures involving the movement of the entire
hand or flexing of the fingers such as sign language.

2) Ballistic gestures: gestures involving spontaneous propulsion of
the limbs in a continuous manner, such as typing.

Further, gesture recognition literature is typically approached us-
ing: vision-based or EMG-based. Vision-based gesture recognition
involves using a vision-based sensor (regular camera, kinect sensor,
etc.) trained at the user’s hands to treat them as objects, then features
are extracted and sent to a classifier. Image processing techniques
such as analysis and detection of shapes, contours, textures, seg-
mentations, motions, and colors have been utilized and found to be
effective [10], [11]. However, vision-based approaches are plagued
by privacy and granularity concerns. Privacy involves user concerns
with regard to how the recorded media is being utilized besides for
purposes of data collection. Granularity is concerned with the level
of resolution required to recognize subtle or quick gestures such as
finger movements. Further, the physical background of the user is
also an issue as it may dilute the image and hinder recognition. On
the other hand, sensor-based gesture recognition techniques utilize
inertial measurement and EMG sensors to extract features and detect
gestures. Sensor-based gesture recognition largely solves the privacy
issue as an ocular view of the user is not required, unless they do
not wish for their muscular data to be shared. However, movement
classification still remains problematic with ballistic gestures since
they – by nature – involve rapid movements.

Various EMG solutions to general gesture recognition have been
developed using a combination of custom hardware and software.
One of the earliest works on the application of EMG on Human
Computer Interfaces was proposed in 1998 by Rosenberg in which a
graphic input device controlled by the wrist is constructed. The device
detects the EMG signal of the forearm muscles used to move the wrist
and moves the mouse pointer on a screen accordingly. Rosenberg
reports that the pointer performs 14% as well as a regular computer
mouse at simple pointing tasks [12]. In 2009 Gopra et al. proposed
an EMG based control method for an upper-limb motion assisting
exoskeleton (SUEFUL-7) with 7 degrees of freedom [13]. SUEFUL-
7 takes advantage of the EMG signal amplitudes produced by the
upper-arm and forearm muscles to predict the intended movement
of the wearer. Experiments have shown that the system is effective
in helping physically weak individuals to rotate their shoulders and
extend/flex their wrists [13].

Chen et al. proposed a pattern recognition system to perform
automatic classification on multiple finger movements, specifically
Chinese sign language gestures for numbers ranging from 0 to 9

[3]. The proposed hardware system consisted of an instrumentation
amplifier and two TelosB motes as an analog-to-digital converter
and to wirelessly transmit data. Although their design is compact,
each channel requires two electrodes at a time — one reference and
one channel electrode. This design fits their implementation with 4
channels [3] but quickly becomes cumbersome when dealing with
high electrode counts such as 8 or 16. XTREMIS resolves this issue
by using one common reference electrode that works with each
channel individually, eliminating the clutter.

Pareschi et al. designed an analog-to-information converter based
on compressed sensing that acquires biosignals with Nyquist fre-
quency up to 100kHz [14]. Compressed sensing is utilized to reduce
the amount of data necessary to represent the signal information con-
tent. Further, the proposed system contains signal saturation checking
mechanisms to allow users to reconstruct the input signal regardless
of the presence of saturation with minimal hardware requirement
costs. Experiments on biomedical signals show that the prototype
is capable of successfully acquiring signals with high compression
factor [14].

A. Muscular Physiology

Instead of being controlled with interior muscles, human fingers
function in a pulley system powered by the forearm. In fact, there
are 20 muscles in the forearm that control fingers and movement.
They can be divided into 2 types: extrinsic and intrinsic muscles.
The extrinsic muscles are the long flexors and extensors. The flexors
are located on the underside of the arm, and allow for the bending of
the fingers [15]. The thumb has one long flexor and one short flexor,
as well as other muscles to make grasping possible. The extensors,
on the other hand, are located on the back of the forearm and they
help to straighten fingers out (i.e. finger extensions).

The Flexor Digitorum Profundus’ primary functions are the flexing
of the wrist, the metacarpophalangeal joints (joints between the bones
and phalanges of the fingers), and the interphalangeal joints (hinge
joints between the phalanges of the hand). In other words, it helps
in flexing the medial four digits of the hand (the index, middle, ring,
and pinky fingers). Whereas the Flexor Pollicis Longus muscle serves
to primarily flex the thumb. Meanwhile, the Extensor Digitorum
Communis muscle allows for the extension of the medial four digits
of the hand. Located on the back of the forearm, this muscle is in a
constant state of contraction when typing due to the posture of human
beings when typing.

III. HARDWARE DESIGN

The high-level user flow of XTREMIS is shown in Figure 1.
Commands are sent from a computer connected to the same wireless
network as XTREMIS. They are then received by the WiFi system-
on-chip(SoC) and sent to the processor. The processor, in turn,
converts the commands to bytes and sets or clears flags on the 6-
degree Inertial Measurement Unit (IMU) or biomedical instrumenta-
tion ADC (BIADC) as required. During data collection, the incoming
digital signal from the BIADC is timestamped by the processor and
converted to hexadecimal format. It is then either saved to the SD
card, sent to the WiFi SoC for transmission, or both.

Figure 2 is a picture of the XTREMIS board with the highlighted
components as shown in Figure 1. XTREMIS’ compact form factor
makes it suitable for a wide range of applications: from wearable
technology to on-the-fly gesture recognition. The architecture of the
XTREMIS board is shown in Figure 3. For simplicity, we split the
circuit into two sub-circuits: data acquisition and data processing.
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Fig. 1: Information flow of XTREMIS. Commands are sent through
WiFi to the WiFi SoC of XTREMIS.

Fig. 2: XTREMIS Circuit Components.

A. Data Acquisition Circuit (DAC)

Input to the BIADC is collected from 8 individual channels (S
= C1,...,C8), a Stimulus, Reference, and Bias (SRB) channel, and
a BIAS channel. EMG is not an absolute measure, instead it can
be considered a relative measure. Based on voltage value of EMG,
we cannot compare directly between muscles or between people.
Therefore, EMG measurements require a reference electrode to each
electrode, the difference between the two is considered the target
muscle’s voltage. The SRB channel serves, therefore, as a common
reference to all channels in S against which the impedance on the
skin is measured between it and a given channel.

As for the BIAS channel, the human body acts as an antenna for a
wide range of radiation frequencies – including frequencies coming

Fig. 3: High-level view of XTREMIS’ architecture.

from electrical appliances in the 50 Hz or 60 Hz range – therefore the
BIAS channel (also called Driven Right Leg or DRL) takes a copy
of the 50 Hz or 60 Hz radiation surrounding the human body and
drives it with a scaled, inverted version, effectively canceling it out.
It is typically utilized for EEG applications as the signal is weak. The
signal for EKG and EMG is stronger and hence it is not required.
The BIAS channel input was added to XTREMIS for potential EEG
applications in future works.

All channels are first passed through an electrostatic discharge
(ESD) protection circuit to protect the BIADC from any electrical
shorts with any object that comes into contact with the channel
pins. Specifically, a TI TPD4E1B06 4-channel bi-directional transient
voltage suppressor was used in our case.

Signals are fed into the BIADC for conversion to digital. First,
incoming signals are fed to a voltage divider to reduce their voltage.
XTREMIS utilizes a Texas Instruments ADS1299 chip for the BI-
ADC due to its ability to process EKG, EMG, and EEG signals with
minimal adjustments. Once the analog signal has been converted to
a digital one by the BIADC, it is ready for actuation by the data
processing circuit.

B. Data Processing Circuit (DPC)

While the DAC is responsible for converting biosignals from
analog to digital, the DPC is responsible for the application program
interface (API) of XTREMIS as well as processing user commands.
More specifically, a 32-bit Microchip PIC32MX250F128B processor
is responsible for saving, transmitting, and annotating the data as
well as adjusting the settings of the BIADC as per the user’s
commands coming in from the WiFi SoC. Communications between
the actuation components (BIADC, IMU, and SD card) and the
processor are done through Serial Peripheral Interface (SPI) protocol
so as to handle the high sampling rates that the BIADC and IMU
(which contains both a gyroscope and an accelerometer) are capable
of.

On the other hand, the WiFi SoC has its own embedded processor
and as such communication with the on-board microprocessor was
chosen to be Universal Asynchronous Receiver-Transmitter (UART)
protocol due to its asynchrony. Synchronization and timing informa-
tion is embedded into the data stream and synchronization at each
end is achieved with a protocol that incorporates start and stop bits.
Further, using UART simplifies the design when using streaming-
mode: the processor simply dumps the samples collected onto the
UART bus and the WiFi SoC picks them up and transmits them.
Utilizing UART instead of SPI in this case is namely a design
choice it is sufficient to support the high data rates coming from the
IMU and the BIADC, thus SPI was not necessary. Finally, the WiFi
SoC is programmed independently from the on-board microprocessor,
making the programming of XTREMIS a two-step process.

C. Data Marking System (DMS)

As with any data collection system, it is paramount that the data
can be properly marked and annotated in real time if there is a need
for it. Certain tasks like typing cannot simply be marked manually,
and require a low latency data marking system to properly mark
the ground truth data. Past works and current products lack DMS
circuits, making the data collection and training process for machine
learning applications cumbersome. Due to the nature of biosignals, it
is impossible to mark data without an external device. Data marking is
usually performed with a video recording of the subject performing
and then cross-referencing it with the biosignal data. The DMS in
XTREMIS allows for the marking of data “on-the-fly” – that is,
as it is being recorded in real time. The inspiration of the DMS
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of XTREMIS came from trying to mark the data coming from a
research-grade EMG machine in our previous work [8]. To resolve
this, we constructed a DMS (referred to as a trigger mechanism)
using an Arduino and a PS/2 keyboard that interfaced with the EMG
machine to properly mark the data when a key was pressed and when
it was released.

XTREMIS employs a similar mechanism in which 6 pins are
dedicated as input pins, who’s state determines whether or not there
needs to be a marking on the data (they are always defaulted to 0
when there is no incoming marker). The reason for using 6 pins
(which correspond to 6 bits in software) is to allow a high variability
in possible marking mechanisms. Specifically, 6 bits allows us to
mark ASCII characters from 0x20 (space bar) to 0x5F (underscore),
encompassing all numbers and uppercase letters. If one of the pins’
states is set to 1, then the data is marked in that instance and the states
are cleared until the next change. This makes it simple to attach any
trigger mechanism to any or all of the pins on XTREMIS that changes
the states of the pins appropriately according to an action taken by
a user, thereby simplifying the collection of data.

IV. CLASSIFICATION TASK

Raw EMG signals come in a somewhat useless form. It hence
becomes important to preprocess and analyze them before training a
classifier. The raw signal is first cleaned up, and relevant segments
of the clean signal are then extracted. Features are then extracted and
used in training or invoking a classification.

A. Preprocessing and Windowing

The first stage that EMG signals have to go through is data
preprocessing. The ISEK Standards of Reporting EMG Data states
that the firing rate of Motor Unit Action Potentials (MUAP) is
typically between 10 Hz and 500 Hz [9], and as such the EMG
data is first passed through a bandpass filter within 10 Hz and 500
Hz. In regular gesture recognition systems the next step is usually
segmentation, which involves separating inactive periods from active
periods in the signal. Active periods are defined as blocks in the
time-series signal where muscle contractions are happening, while
inactive periods are blocks where the muscle is relaxed. However in
ballistic gestures resting periods are very brief or sometimes non-
existent. Instead, they become transition periods, which are times
where the finger is moving from a key release to the next key press.
Since transition periods vary in intensity across people and typing
speeds, we use overlapping windows to label the onset of key press,
period where the key is pressed, and key release.

In regular gesture recognition literature, there are several ap-
proaches to segment EMG signals [3], [17], [18], [19], the most
common of which are:

1) Segmentation by detecting peaks of Motor Unit Action Poten-
tials (MUAPs).

2) Segmentation using energy/peak detection.
3) Segmentation using Discrete Wavelet Transforms.
Although their performance is good when applied to regular gesture

recognition, a caveat of the above methodologies is that they require
calculation of parameters such as thresholds, Maximum Voluntary
Contraction (MVC), and appropriate window sizing, usually found
using trial-and-error in experimentation. Further, using thresholding
may be counter intuitive as the instability of signals may create
inconsistencies between the shapes of active and transition periods.
Although the peaks in the waveform are evident, the fluctuations
of rest periods makes it difficult to detect them reliably. These
fluctuations are referred to as “movement epenthesis”, which occur
when performing rapid movements. This is common when dealing

with ballistic gestures due to the spontaneity of the gestures and their
similarities to a muscle twitch, making them difficult to remove com-
pletely using only filters. Finally, thresholds are likely to differ when
applied to different people as everyone has different physiologies due
to factors like the amount of body fat they have and their muscular
structure. Hence, the period between a key release and the next key
press cannot be treated as a resting period. Instead, using overlapping
windows to label onsets, offsets, and transitions between keys will
help to build more robust classifiers. Features are then extracted from
each window and the corresponding label that is within it (i.e. a key
press, release, or in between a press and a release) is used as the
ground truth.

B. Windowing

When extracting data for training, a sliding window approach
with overlap was adopted in which if a key press marker is found
then that window and all subsequent windows until the key release
marker are labeled with the finger mapped to that key. A sliding
window-style of labeling gives information as to how long finger
presses and transitions are, making it more resilient to typing speeds.
Additionally, sliding windows allow for training the HMM to de-
tect onsets and offsets of key presses, making it more resilient to
movement epenthesis – a common phenomenon when dealing with
ballistic gestures that occurs due to the spontaneity of the gestures
and their similarities to a muscle twitch, making them difficult to
remove completely using a filter [8].

C. Feature Extraction

Once windows of the signal have been identified, features are
extracted from each window. The features selected in this work were
handpicked from past gesture classification work [20], [3], [21], [22]
on fine-grained gesture recognition such as playing the piano [20]
and sign language [3]. Alternatively, a random-forest classifier can
be used to find the best performing features. Two types of features
were extracted: time domain (TD) features and frequency domain
(FD) features.

1) Time Domain Features: Some of Hudgin’s feature set was
utilized to obtain the time domain features due to the simplicity
of their computations and their ability to describe the signal at the
time domain well [21]. In this work, four of these features were
implemented in addition to the Root Mean Square.

1) Mean Absolute Value (MAV) — Estimate of the MAV of the
signal in window i which is N samples in length, given by:

MAVi =
1

N

N∑
k=1

|xik| where i = 1, ..., I (1)

where xik is the kth sample in window i and I is the total
number of windows over the entire signal.

2) Difference MAV — Represents the difference in MAV between
the window i and the subsequent window i+ 1, given by:

∆MAVi = MAVi+1 −MAVi. (2)

3) Slope Sign Changes (SSC) — Number of times the slope of
the waveform changes signs (from positive to negative, or vice
versa). A suitable threshold must be chosen to reduce noise
induced changes. Given three consecutive samples in window i:
xik−1, xik, and xik+1, the slope sign change count is incremented
if:
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(
xik > max(xik−1, x

i
k+1) ∨ xik < min(xik−1, x

i
k+1)

)
∧ max(|xik+1 − xik|, |xik − xik−1) > Ω,

(3)

where Ω is a threshold value that is determined as 0.02mV for
a noise value of 21.34µV peak-to-peak [23].

4) Waveform Length (WL) — The cumulative length of the wave-
form over the window i. This is the cumulative length of the
waveform over the time window, defined as:

WLi =

N∑
k=2

∣∣∣xik − xik−1

∣∣∣ , (4)

where xik−xik−1 is the difference in consecutive sample voltages
[21].

5) Root Mean Square (RMS) — Provides a measure on the power
of the signal in window i which is N samples in length.

RMSi =

√√√√ 1

N

N∑
k=1

(xik)2. (5)

2) Frequency Domain Features: The frequency domain features
used were Hjorth’s parameters, the mean, and median frequencies
extracted from the power spectrum of the signal. Hjorth’s parameters
are normalized slope descriptors typically used in EEG processing
for data reductions or automatic sleep stage scoring. In this work
we use them for the detection of the transient EMG signal which
occurs during muscle contractions, or when a muscle is switching
from a relaxed to a contracted state and vice versa. We first define
the spectral moments over a discrete fourier transform. The zero-order
moment m0i over window i is proportional to the mean energy in
that window, and is defined as:

m0i =
1

F

f2∑
f=f1

P i
f , (6)

where f1 to f2 are a range of frequencies of length F = f2−f1, and
P i
x is the discrete power spectrum of the signal in window i. Since

the EMG frequency range is between 10Hz and 500Hz [9], the range
f1 = 0 and f2 = 500 were used. The first-order moment is defined
as:

m1i =
1

F ·m0i

f2∑
f=f1

P i
f (

f

Ni∆t
), (7)

where Ni is the length of the power spectrum, and ∆t is the
sampling interval. To get higher order shape information one needs
to define the central moments in the discrete domain as follows:

mni =
1

F ·m0i

f2∑
f=f1

P i
f (

f

Ni∆t
− f̄)n, (8)

where f̄ is the normalized value found from the discrete first order
moment. Now that the spectral moments have been defined, we can
proceed to defining the Hjorth parameters:

1) Activity — Represents signal power as the variance of the
amplitude of the signal. In the frequency domain, it can be
conceived as the envelope of the power spectrum [24] in window
i. Activity is defined as:

Activityi = m0i = σ2
0i , (9)

where σ2
0i is the variance of window i.

2) Mobility — measures the ratio between the standard deviation
of the slope and the standard deviation of the amplitude per time
unit. In other words, it represents dominant frequency. Mobility
for window i is defined as:

Mobilityi =
√
m2i/m0i = σ1i/σ0i , (10)

where the second order moment m2i is a measure of the width
of the spectrum about the mean in window i, and σ1i is the
standard deviation of the first derivative of the signal in window
i.

3) Complexity — Represents change in frequency. It compares the
signal’s similarity to a pure sine wave [24], and is defined as:

Complexityi =
√

(m4i/m2i)− (m2i/m0i) =
σ2i/σ1i

σ1i/σ0i

,

(11)
where σ2i is the standard deviation of the second derivative of
window i.

Finally, we obtain the mean and median frequencies from window
i as follows:

1) Mean Frequency — an average frequency which is calculated
as the sum of the product of the EMG power spectrum and
frequency divided by the total sum of the power spectrum [25],
[26].

fmeani =

∑M
j=1 fj · P

i
j∑M

j=1 P
i
j

, (12)

where M is the number of frequency bins, fj is the frequency
value of the EMG power spectrum at frequency bin j, and Pj

is the EMG power spectrum at frequency bin j.
2) Median frequency — a frequency at which the EMG power

spectrum is divided into two regions with equal integrated
power[25], [26]. The halved power spectrum is then traversed
and the median frequency is obtained.

M∑
j=f˙median

P i
j =

1

2
·

M∑
j=1

P i
j , (13)

where MDF is the median of the number of frequency bins M .

D. Hidden Markov Model

To take advantage of the patterns produced by fingers while typing,
the HMM is employed to predict the fingers that have been pressed
given time t. A left-to-right Gaussian mixture HMM is built with
6 states: 5 fingers and a transition state, which represents the hand
movement as it is between releasing a key and pressing the next key.
Figure 4 shows the state transition diagram between the finger and
transition states.

Fig. 4: State transition diagram of the GM-HMM.

A HMM λ = (A,B,Π) consists of the following:
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1) A set of H hidden states, S = S1, S2, ..., SN .
2) A state transition probability distribution A = aij where i, j ∈
S. More formally,

aij = P (St = Sj |St−1 = Si), 1 ≤ i, j ≤ H (14)

3) An observation probability distribution B = bi(ot). The proba-
bilistic function for each state si is:

bi(ot) = P (ot|St = Si) (15)

where ot is the observation at time t.
4) An initial probability distribution Π = π, i ∈ S where πi is

defined as:
πi = P (S1 = Si) (16)

The transition and observation probability distributions A and B
are constructed from training data. The state relationships can be
thought of as a fully connected graph, in which a state has a non-zero
probability of transitioning to any other state as shown in Figure 4.
However, due to the abundance of transition states (users are more
often in transition than using any other finger) every finger state has
a higher probability of transitioning to a transition state than a finger
state.

In a GM-HMM, the function bi(ot) takes the form of a Gaussian
mixture of continuous probability density functions (PDF):

bi(ot) =

M∑
k=1

wikbik(ot), i = 1, ..., N (17)

where M is the number of mixtures and w is the weight of each
mixture. The mixture weights have the following constraints:

M∑
k=1

wik = 1;wik ≥ 0, i = 1, ..., N, k = 1, ...,M (18)

Each bik(ot) is a d dimensional Gaussian density with mean
vector µik and covariance matrix Σik. For each state, a multivariate
Gaussian density in the form:

bik(ot) = g(ot, µik,Σik) =

1√
((2π)d|Σik|

· exp
(
− 1

2
(ot − µik)T Σ−1

ik (ot − µik)
)

(19)

is used where ot is the observation. For each state si, the mean
and covariance (µi,Σi) are used to construct the emissions matrix.
Hence, it is important to choose an appropriate value for d for
each state’s Gaussian mixture density function, which in turn defines
its mean and covariance pairs. To do so, a GMM with different
parameters is fit to the observations of each state. The model with
the smallest Bayesian Information Criterion (BIC) is selected as the
most representative model of the data. Indeed, minimizing the BIC
corresponds to maximizing the posterior model probability for a large
number of observations and is an effective method of selecting a
model [27]. The BIC can be defined as:

BIC = −2 · ln(θ̂) + p · ln(n), (20)

where θ̂ = p(ô|δ,M) is the maximized value of the likelihood
function of the model M , p is the number of free parameters to
be estimated, and n is the number of observations [27].

V. EXPERIMENTAL SETUP

To verify the functionality and fidelity of XTREMIS, its signal is
compared to the gold standard in EKG/EMG/EEG data collection:
the BioSemi ActiveTwo [7]. Specifically, XTREMIS is compared to
BioSemi in two aspects:

1) Signal quality: We evaluate the signal of XTREMIS as well
as compare it to BioSemi’s signal in a salt water experiment to
verify their similarity.

2) GM-HMM classification performance: We compare
XTREMIS to BioSemi in ballistic gesture recognition in
a similar experiment to our previous work [8]. In this work,
however, the experiment encompasses only anatomically-aware
electrode placement using XTREMIS and BioSemi ActiveTwo
at the same 1024 Hz sampling rate, whereas the previous
work explored a ring-of-electrodes configuration and different
sampling rates.

We begin by presenting the signal-level analysis and a signal-to-
noise ratio comparison between XTREMIS and BioSemi ActiveTwo,
then proceed to show that the highly correlated signal leads to a
good ballistic gesture classification accuracy by performing typing
experiments on 8 participants: 4 females and 4 males.

A. Signal Comparison

To verify the SNR of XTREMIS over different frequencies, a signal
generator was used to input sine wave signals of varying frequencies
at different sampling rates. The SNR was calculated by first applying
a notch filter at 60 Hz to eliminate power line noise. The input is
then normalized and 5 segments – equally spaced – are extracted
from the entire data stream. The measured signal may not always
be strictly periodic (due to various potential factors surrounding the
experiment), making it more similar to a real biomedical signal. If this
irregularity is left unchecked, it will create discontinuities that appear
as high frequency components in the fast Fourier transform (FFT).
Hence for each segment, a Hann window [28] is extracted to reduce
the amplitude of these potential discontinuities. The power-spectral
density (PSD) of the signal is then obtained from the FFT using
Welch’s method [29] since the frequency range of the fundamental
frequency of the input signals is known. The SNR is then obtained
from the PSD as follows:

SNR = 10 · log10

( f2∑
i=f1

P (i)

∑
fx∈F P (S)−

f2∑
i=f1

P (i)

)
, (21)

where P (i) is the normalized power of the signal between fre-
quencies f1 and f2 and P (S) is the normalized power of the signal
at all frequencies.

1) Saline Experiment: Since BioSemi ActiveTwo is the gold
standard of EKG/EMG/EEG machinery, it is important to ensure that
the signal from XTREMIS is similar to the signal from BioSemi. To
analyze this, electrodes from a signal generator are placed in two
buckets of saline solution (a mixture of sodium chloride with water).
The reference electrodes are placed into one bucket(the reference
bucket) and the signal electrodes are placed into the other (signal
bucket).

The reference electrodes of XTREMIS and BioSemi ActiveTwo are
also placed into the reference bucket, while their channel electrodes
are placed into the signal bucket. The signal generator then generates
a sine wave signal at a predetermined frequency, which is first
verified through an oscilloscope to ensure consistency and precision.
XTREMIS and BioSemi are configured to collect data from the
electrodes submerged in the signal bucket and their signals are
then compared. This experimental setup is common in testing EMG
equipment due to the similarity in electrical conductivity between the
human body and saline. Figure 5 highlights the setup in separating
the reference electrodes and the channel electrodes in two separate
buckets.
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Fig. 5: The setup for the salt water signal comparison test. Reference
electrodes from the signal generator, XTREMIS, and BioSemi are
placed in the bucket to the top left, while the channel electrodes are
placed in the bucket to the right.

B. Classification Comparison

Finger movement prediction is analyzed during a typing task
under 3 different typing speeds: slow, regular, and fast. A 500-word
paragraph is presented to the subject. The experimental procedure is
as follows:

1) The subject is asked to perform a test run of the paragraph.
2) The subject types the paragraph at slow speed (10-25 words-

per-minute).
3) The subject then types the paragraph at their regular typing speed

(30-50 words-per-minute).
4) The subject types the paragraph as fast as they can (50-75 words-

per-minute).

Additionally, finger movement is analyzed during the typing task
under 3 factors:

1) Words-per-minute (WPM).
2) Electrode placement configurations.
3) Sample rates.

The BioSemi and XTREMIS are fitted onto subjects in an alternat-
ing fashion such that half the subjects had XTREMIS fit onto them
first, and the other half had BioSemi fit first. This acts as a control
in case subjects’ typing habits change as they type a more familiar
paragraph (e.g., they’re devoting fewer cognitive resources to reading
the paragraph, and hence are more able to exert control over which
fingers they’re using). It is important to note that both systems used
the same type of electrodes – silver/silver chloride. After each time
the subject types the paragraph, they have the option of taking a
rest to recuperate and ensure they are not too tired to continue. We
will first discuss the process of marking ground truth labels for each
system.

1) Automated Collection of Ground Truth Labels: As discussed
in Section III-C, XTREMIS’ DMS works similarly to BioSemi’s
trigger interface. To properly annotate data with key press and key
release times, an external trigger system was constructed to translate
key events to data markers. Therefore, two systems were built that
functioned almost identically: a trigger system for BioSemi, and one
for XTREMIS. Each system consisted of a PS/2 keyboard interfaced
with an Arduino Uno, which in turn was interfaced with the BioSemi
trigger input connector or the DMS on XTREMIS. In a sense, the
Arduino functions as a Serial-to-Parallel converter: it receives input
from the PS/2 keyboard, converts it to a binary number (8-bits for

BioSemi, 6-bits for XTREMIS), and then inputs this number to
BioSemi’s trigger system or XTREMIS’ DMS.

Further, electrodes were placed on the individual’s right forearm
in an anatomical configuration identified in previous works to be the
best placement of electrodes to capture muscular contractions clearly
[30], [8].

VI. RESULTS AND DISCUSSION

A. Signal Quality

Figure 6 shows the SNR of the XTREMIS signal at different sine
wave frequencies into one channel of XTREMIS collecting at 1024
Hz.

Fig. 6: SNR of XTREMIS signal at different input signal frequencies.

It should be noted that the ADS1299 chip’s sample rate becomes
less stable at higher frequencies. This is likely due to the design of the
ADS1299 chip combined with the small form factor of XTREMIS
(55mm×35mm), as the wires on board may generate high frequency
noise that is picked up by the chip. It was found that approximately
1024 Hz is the maximum sampling rate at which the SNR is high
enough to obtain a reliable signal at all biosignal wave frequencies.
Since the bandwidth of EMG, EEG, and EKG signals is 10-500 Hz
[9], 1-50 Hz [31], and 0.05-100 Hz [32] respectively, the signal
quality of XTREMIS is still sufficient at high sampling rates to
capture more than the Nyquist frequency of the EKG, EEG, and
EMG signals.

When sampling at rates higher than 500 Hz and high gains
(specifically, a gain of ×8), there is a small shift in the detected
frequency of a given signal due to a higher noise. Figure 7 shows
the percentage in which the signal frequency shifts at different input
signal frequencies while sampling at 1024 Hz. This measure can also
be considered as a percent error on the detected signal frequency
with different input signals. Since we already know the PSD of the
incoming signal, it is possible to calculate the signal frequency shift
as follows:

shift = 100× fmax − finput

finput
, (22)

where fmax is the frequency detected by XTREMIS with the
highest amplitude and finput is the frequency of the input signal.
The similarity in shift percentage at different frequencies indicates
that there is a consistency to the frequency shift. This consistency is
due to the fact that the ADS1299 chip always samples at its highest
frequency (16 kHz) regardless of sample rate. Indeed, changing the
sampling rate on the ADS1299 actually changes the decimation
ratio, and hence why at higher sampling rates there is a higher
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amount of noise due to the reduction in averaging samples. This also
corresponds with the ADS1299 data sheet specification regarding the
increase of noise if the data rate and the gain setting are set too high.
Data rates are to be minimized for each application to reduce noise
as much as possible [23].

Fig. 7: Shift of XTREMIS signal’s frequency at different input signal
frequencies.

B. Signal Comparison

Figure 8 shows the SNR calculated for XTREMIS and for BioSemi
ActiveTwo in the saline experiment. The SNR of BioSemi ActiveTwo
is – as expected – higher than XTREMIS as it is a research-grade
EKG/EEG/EMG machine with more sophisticated and proprietary
biomedical technology. More specifically, BioSemi ActiveTwo’s elec-
trodes have built-in amplifiers that amplify the signal prior to sending
it to the machine – this results in a significantly cleaner signal as the
amplification occurs close to the source. In the case of XTREMIS,
the amplification occurs on the circuit board – after the signal
passes through the wires on its way from the skin. This creates a
higher level of noise. However, this creates a tradeoff between cost
and signal precision since the state-of-the-art electrodes on BioSemi
cost approximately $640 for a 16 channel set, whereas XTREMIS
electrodes cost approximately $40. Both systems follow a similar
trend in their SNR progression at different frequencies, indicating
that XTREMIS is a valid alternative due to its portability, ease-of-
use, and robust signal.

Fig. 8: Comparison between the SNR of XTREMIS and BioSemi
ActiveTwo at different input signal frequencies.

C. Classification Results

We compare the classifier performances averaged over all subjects
across different speeds using ground truth labeling described in

(a) (b)

Fig. 9: (a) GM-HMM accuracy using ground truth data using dif-
ferent hardware. Results averaged over all subjects. (b) XTREMIS
Accuracies across User-Dependent and User-Independent GMHMM
models

Section V-B1 and following the experimental procedure discussed
in Section V-B. Figure 9(a) shows the average accuracy of all
subjects across 3 different speeds while collecting data from BioSemi,
XTREMIS, and the Myo armband. The accuracies obtained from
applyoing the algorithm using BioSemi data v.s. XTREMIS data
suggests that the signal of BioSemi and XTREMIS is similar enough
that it is possible to have comparable performance in classification.
Further, this result is significantly higher than the highest accuracy
achieved by Myo: approximately 82% at the slowest typing speed.

A strong classification model should function across speed as well
as users. Figure 9 (b) highlights the performance of the GM-HMM
user-independent (UI) model v.s. the user dependent (UD) model on
data collected using XTREMIS. The accuracy of UD model reported
is the average accuracy from all user trials. The UI GM-HMM
generally performs almost as well as its UD counter-part, indicating
that the GM-HMM can be trained to function across multiple users
using XTREMIS.

Table I highlights the average precision and recall achieved across
all users using ground truth data on all systems. The consistent high
precision and recall scores across all speeds as well as their similarity
between XTREMIS and BioSemi indicate that not only does the GM-
HMM function well across speeds, but XTREMIS’ performance and
data quality collected is similar to BioSemi. On the other hand, the
Myo armband’s precision and recall suffer due to its lower sample
rate and rigid form factor.

Tables II and III are confusion matrices of the GM-HMM trained
on BioSemi and XTREMIS, respectively. The GN-HMM suffers
most on both devices when classifying between middle and ring
fingers. This may be due to the middle and ring fingers sharing
several muscles and as a result having a very similar waveform. The
lower classification on XTREMIS suggests that the signal quality is a
contributing factor to classification, even though the GM-HMM also
takes advantage of movement patterns during the training phase.

D. Configuration Effects

Prior to constructing XTREMIS, we compared the classifier perfor-
mances averaged over all subjects across different speeds using the
ring and anatomical electrode placements using subject dependent
training on Myo and BioSemi ActiveTwo. Table IV shows the
classification accuracies obtained when typing a paragraph using the
Myo with ground truth data.

Tables V and VI show the average performance over all sub-
jects of each classifier for the Biosemi ActiveTwo system in ring
and anatomical-based configurations, respectively. The GM-HMM’s
consistency of performance across speeds and degradation of per-
formance across placements show that electrode placement indeed
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TABLE I: Average Precision and Recall when typing a paragraph using XTREMIS v.s. BioSemi ActiveTwo v.s. Myo armband

XTREMIS BioSemi Myo Armband
Precision Recall Precision Recall Precision Recall

Sp
ee

d Slow 92.4% 88.2% 95.2% 90.2% 78.16% 72.31

Regular 93.1% 89.1% 94.8% 91.3% 77.02 73.47

Fast 91.8% 89.0% 93.1% 89.7% 74.45 64.33

TABLE II: Confusion matrix of GM-HMM using XTREMIS

Ground Truth
Thumb Idx. Mid. Ring Pinky Tran.

Pr
ed

ic
tio

n

Thumb 96% 0% 0% 0% 0% 4%

Idx 0% 91% 7% 0% 0% 2%
Mid. 0% 0% 92% 5% 0% 3%

Ring 0% 0% 6% 94% 0% 0%

Pinky 0% 0% 0% 5% 92% 3%
Tran. 0% 0% 0% 0% 0% 100%

TABLE III: Confusion matrix of GM-HMM using BioSemi Ac-
tiveTwo

Ground Truth
Thumb Idx Mid. Ring Pinky Tran.

Pr
ed

ic
tio

n

Thumb 97% 0% 0% 0% 0% 3%
Idx 0% 94% 4% 0% 0% 2%

Mid. 0% 0% 92% 5% 0% 3%
Ring 0% 0% 4% 95% 0% 1%
Pinky 0% 0% 0% 5% 93% 2%

Tran. 0% 0% 0% 0% 0% 100%

plays a role in classification accuracy. Moreover, using a GM-HMM
with an anatomical placement of electrodes yields the best results.
The confusion matrix in Table II shows that while the HMM with
anatomical placement of electrodes performs well, it still suffers most
when classifying between middle and ring fingers. This may be due
to the middle and ring fingers sharing several muscles and as a result
having a very similar waveform. Other classifiers’ performance drops
significantly as speed increases, likely due to their inability to take
advantage of transition probabilities.

Fig. 10: Classifier accuracy V.S. sampling rate using Biosemi Ac-
tiveTwo with anatomical configuration for HMM and SVM.

Additionally, the high performance of the Biosemi ActiveTwo

TABLE IV: Classifier performance when typing a paragraph while
wearing the Myo armband.

Paragraph Typing
HMM SVM kNN DT

W
PM

Slow 82% 65.3% 63% 63.2%
Regular 82% 55.3% 53.1% 53%

Fast 80% 52.3% 49.8% 48.1%
Fastest 78% 43% 42.2% 41%

TABLE V: Classifier performance when typing a paragraph using
the Biosemi ActiveTwo sEMG, with electrodes arranged in a ring
configuration like the Myo armband.

Paragraph Typing
HMM SVM kNN DT

W
PM

Slow 94% 72% 72% 70%

Regular 93.2% 70% 69.2% 67%
Fast 93% 68% 66.5% 64.2%

Fastest 92.6% 66.3% 66% 64.1%

compared to the Myo indicate that sampling rate also plays a role.
To verify this, the data obtained from the anatomical placement
was downsampled down to approximately 50 Hz and the classifier
accuracy was obtained at each sampling rate. Figure 10 shows the
changes in HMM and SVM accuracy as sampling rate increases. For
both methodologies, a sliding window of 50ms with 10ms overlap
was used. Window size and sampling rate are correlated in that if
one is sufficiently large, the other must be sufficiently small. In
other words, the window size must be larger in order to include
more samples for analysis. Similarly, if the sampling rate is high, the
window size should be smaller. Due to timing and space constraints,
we have not investigated the impact of different window sizes on
accuracy, and leave it to future works. Additionally, at 200 Hz the
performance becomes comparable to the accuracies achieved by Myo
in Table IV. Therefore, this validates the ISEK standard [9] for EMG
signal bandwidth as well as confirms that the 200 Hz claimed by Myo
is not enough for research-level use.

1) Onset Detection: Finally, Figures 11(a) and (b) show a com-
parison between the timings of classifications for two GM-HMMs
for each device: one using ground truth (GT) as training and another
using the sliding window (SW) approach. A “too early” classification
indicates that the GM-HMM classified a window as a finger when it
was still a transition, while a “too late” classification indicates that the
GM-HMM classified a window as a transition when it has become a
finger already. Finally, a “misclassification” is when the GM-HMM
misses a finger movement entirely or classifies a finger as another
finger. Therefore, finger detection accuracy is not only defined as
correct v.s. incorrect classifications, it is also defined by the timing
of classifications. Figures 11(a) and (b) indicates that the GM-HMM
is more inclined to make a classification too early rather than too late.
This can be due to the delay between a muscle contraction and a key
press, as humans must first contract the muscles before a movement
is made. Additionally, this result is consistent with the timing analysis
performed in our previous work [8].
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TABLE VI: Classifier performance when typing a paragraph using
the Biosemi ActiveTwo sEMG, with electrodes placed on specific
muscles as shown in Figure ??(b)

Paragraph Typing
HMM SVM kNN DT

W
PM

Slow 98.4% 88.2% 87.4% 85.2%

Regular 97.1% 85.1% 84.2% 84%
Fast 96.8% 76% 74.5% 74%

Fastest 96.4% 71% 69.4% 68.2%

(a) XTREMIS (b) BioSemi ActiveTwo

Fig. 11: Timing of GM-HMM Recognition on BioSemi ActiveTwo
and XTREMIS

E. Power Consumption Analysis

Power consumption analysis is an important cornerstone of any
embedded system solution. Due to the Wi-Fi SoC and the ADS1299
chip’s power consumption, the total power consumption of XTREMIS
cannot be strictly classified as “low-power”. However, XTREMIS
requires only 4 AA batteries connected in series to perform all of
its functions. Table VII shows the power consumption and estimated
battery life for each operating mode with ADS1299 collecting at 1024
Hz powered by 4 Duracell Procell AA batteries with a capacity of
2148 mAh. These estimates are based on measurements of current
and voltage taken under each operating mode, and may not be
strictly accurate since the measurements were not performed until the
batteries ran out. However they provide a reasonable rough idea of the
expected operation time. The most power-hungry mode is streaming
over Wi-Fi at 1024 Hz, which lasts approximately 18 hours – which
is still long enough for longitudinal studies like sleep studies. Myo,
on the other hand, claims a 24 hour battery life while streaming [4].
However, Myo has an unfair advantage in this case as it is using BLE
technology to stream at 250 Hz. Since the ADS1299 collects data at
a rate of 16 kHz and then decimates it according to the user’s chosen
data rate, it makes no difference in power consumption to reducing
the sampling rate to save power on XTREMIS.

TABLE VII: Power consumption in different modes of operation on
XTREMIS

Operating Mode Avg. Current(mA) Est. Battery Life
Wi-Fi ON (No data
collection)

115.60 18 hours 38 minutes

Wi-Fi OFF (No data
collection)

87.91 24 hours 43 minutes

Wi-Fi ON (Data col-
lection and stream-
ing)

120.43 17 hours 45 minutes

Wi-Fi OFF (Data
collection)

113.75 18 hours 53 minutes

VII. CONCLUSION AND FUTURE WORKS

We presented XTREMIS: a low-cost and portable EMG platform
with a similar form factor to off-the-shelf wearable sensors that
is comparable to research-grade EMG machines in sampling rates,
electrode placement fluidity, and signal-level processing. Indeed,
experiments on 8 subjects have shown that not only does XTREMIS
functionally outperform off-the-shelf technologies; it also produces a
signal that is similar to that of research-grade EMG machines. It is
also capable of EKG and EEG signal data collection.

Although XTREMIS currently performs well, it is important to
address several issues moving forward. The first is placing it into a
more user-friendly form factor: currently it rests as a standalone unit
away from the user. A better form factor would be integrating it into
a sleeve to be worn by the user. Secondly, to increase usability it is
important to explore the use of dry-surface electrodes instead of the
current wet-gel silver/silver chloride ones. Dry-surface electrodes will
create a noisier signal but eliminate the need to use conductive gel
for every experiment, making it more suitable to users not trained in
EKG/EMG/EEG data collection. Finally, the sampling rate currently
destabilizes at sampling rates above 500 Hz. We have shown that this
is due to the ADS1299 chip’s design, however it would be interesting
to explore some post-hoc processing steps that may be implemented
to overcome this issue and increase the SNR even further at higher
frequencies. On the other hand, a better form factor that separates
digital and analog signals in a more effective way is also being
explored. Finally, it is important to upgrade the DMS system to map
all possible letters on a keyboard, potentially making the entire system
language-agnostic. The current implementation only supports 6 bits
for markers due to the pin number of pins available for marking on
the current iteration of XTREMIS. Indeed, in addition to an additional
number of general-purpose input/output pins.
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